Open Access

Hydrothermal Synthesis and Characterization of Tin Oxide Nanoparticles

T. Regin Das, Department of Physics, Lekshmipuram Arts and Science College, Neyyoor, Nagercoil, Tirunelveli, TN, India. M. Meena, meenataj19@gmail.com
Department of Physics, S.T. Hindu College, Nagercoil, Abishekapatti, Tirunelvel, TN, India.
I. Vetha Potheher, Department of Physics, Bharathidasan Institute of Technology, Anna University, BIT Campus, Tirchy, TN, India. P. Aji Udhaya Department of Physics, Holy Cross College, Nagercoil, Abishekapatti, TN, India.


J. Environ. Nanotechnol., Volume 9, No 2 (2020) pp. 15-19

https://doi.org/10.13074/jent.2020.06.202408

PDF


Abstract

Metal oxide nanoparticles have potential applications in a wide range of fields like medicine and environmental science. Tin oxide (SnO2) has been applied as a semiconductor nanomaterial in electronics. Tin oxide is a widely used and intensively studied n-type semiconductor. The research on tin oxide semiconductors has been growing due to the wide range of applications, especially as photo sensors, catalysts and antistatic coating. The electrical conductivity and luminescence properties of SnO2 are mainly decided by the oxygen vacancy present in it.  This work was intended to synthesize Tin oxide (SnO2) nanoparticles via a one-step hydrothermal method and study the effect of annealing temperature on its properties. As prepared samples were annealed at two different temperatures and the samples were characterized by Powder X-Ray Diffraction (PXRD), Ultraviolet Diffusion Reflectance Spectroscopy (UV-DRS) and Photo Luminescence (PL). The dependence of structural and optical properties with temperature was discussed.

Full Text

Reference


Arai, T., The study of the optical properties of conducting tin oxide films and their interpretataion in terms of a tentative band scheme, J. Phys. Soc. Jpn., 15, 916–927(1960).

https://doi.org/10.1143/JPSJ.15.916

Arularasu, M., Anbarasu, M., Poovaragan, S., Sundaram, R., Kanimozhi, K., Magdalae, C. M., Kaviyarasu, K.,

Thema, F. T., Letsholathebe, D., Mola, G. T. and Maaza, M., J. Nanosci. Nanotechnol., 18(5), 3511–3517(2018).

https://doi.org/10.1166/jnn.2018.14658

Avila, H. A. and Rodiguez-Paez, J. E., Solvent effects in the synthesis of tin oxide, J. Non-Cryst. Solids., 355(14-15), 885-890(2009).

https://doi.org/10.1016/j.jnoncrysol.2009.03.004

Choi, W. K., Jung, H. J. and Koh, S. K., Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition, J. Vac. Sci. Technol. A.,14, 359–366(1996).

https://doi.org/10.1116/1.579901

Davar, F.,Salavati-Niasari, M. and Fereshteh, Z., Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor, J. Alloys Compd., 496(1-2), 638–643(2010).

https://doi.org/10.1016/j.jallcom.2010.02.152

Gaber, A., Abdel-Rahim, M. A., Abdel-Latief, Y. A. and Abdel-Salam, M. N., Influence of calcinations temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method, J. Electrochem. Sci., 9, 81–95(2014).

Ge, J. P., Wang, J., Zhang, H. X., Wang, X., Peng, Q. and Li, Y.D., High ethanol sensitive SnO2 microspheres, Sensor Actuat. B:Chem., 113(2), 937-943(2006).

https://doi.org/10.1016/j.snb.2005.04.001

Gu, F., Wang, S. F., Lu, M. K., Zhou, G. J., Xu, D. and Yuan, D. R., Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method, J. Phys. Chem. B., 108, 8119-8123(2004).

https://doi.org/10.1021/jp036741e

Gu, F., Wang, S. F., Lü, M. K., Zhou, G. J., Xu, D. and Yuan, D. R., Photoluminenescence properties of SnO2 nanoparticles synthesized by sol-gel method, J. Phys. Chem. B., 108, 8119–8123(2004).

https://doi.org/10.1021/jp036741e

He, Jr. H., Wu, Te. H., Hsin, C. L., Li, K. M., Chen, L. J., Chueh, Y. L. and Wand, Z. L., Beaklike SnO2 nanorods with strong photoluminescent and fieldemission properties, Small, 2(1), 116-120(2005).

https://doi.org/10.1002/smll.200500210

He, Z. Q., Li, X. H., Xion, L. Z., Wu, X. M., Xiao, Z. B.

and Ma, M. Y., Wet chemical synthesis of tin oxidebased material for lithium ion battery anodes, Mater. Res. Bull., 40(5), 861-868(2005).

https://doi.org/10.1016/j.materresbull.2004.06.021

Hwang, I. S., Choi, J. K., Kim, S. J., Dong, K. Y., Kwon, J. H., Ju, B. K. and Lee, H. J., Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sensor. Actuat. B : Chem., 142(1), 105-110(2009).

https://doi.org/10.1016/j.snb.2009.07.052

Jain, G. and Kumar, R., Electrical and optical properties of tin oxide and antimony doped tin oxide films, Opt. Mater., 26(1), 27–31(2004).

https://doi.org/10.1016/j.optmat.2003.12.006

Ponzoni, C., Cannio, M., Boccaccini, D., Bahl, C. R, H., Agersted, K. and Leonelli,C. S., Ultrafast microwave hydrothermal synthesis and characterization of Bi1-xLaxFeO3 micronized particles, Mater. Chem. Phys., 162, 69–75(2015).

https://doi.org/10.1016/j.matchemphys.2015.05.002

Rahman, N. A., Farrukh, M. A., J. Chin. Adnan R., Razana Chem. Soc.-Taip. (2010), 57, 22.

Toledo - Antonio, J. A., Gutierrez-Baez, Sabastin, P. J. and Vazquez, A., Termal stability and structural

deformation of rutile SnO2 nanoparticles, J. Solid State Chem.,174, 241-248(2003).

https://doi.org/10.1016/S0022-4596(03)00181-6

Tran, V.-H., Ambade, R. B., Ambade, S. B., Lee, S.H. and Lee, I. H., ACS Appl. Mater. Interfaces., 9(2), 1645–1653(2017).

https://doi.org/10.1021/acsami.6b10857

Contact Us

Powered by

Powered by OJS