Open Access

Dynamic and Equilibrium Studies on the sorption of Basic dye (Basic Brown 4) onto Multi-walled Carbon Nanotubes Prepared from Renewable Carbon Precursors

P. Mahalingam, Department of Chemistry, Arignar Anna Arts College, Namakkal, TN, India.,,,, T. Maiyalagan, Texas Materials Institute, University of Texas at Austin, TX 78712, USA. E. Manikandan, Department of Physics, B.S. Abdur Rahman University, Vandalur, Chennai, TN, India. Syed Shabudeen, Department of Chemistry, Kumaraguru College of Technology, Coimbatore, TN, India. S. Karthikeyan skmush@rediffmail.com
Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India.


J. Environ. Nanotechnol., Volume 2, No 3 (2013) pp. 43-62

https://doi.org/10.13074/jent.2013.09.132033

PDF


Abstract

The main objective of this research was to evaluate the adsorption mechanism of Multi-walled carbon nanotubes synthesized from Pine oil, methyl ester of Jatropha curcas oil and methyl ester of Pongamiya pinnata oil in comparison with commercial Activated Carbon for the removal of Basic dye (Basic brown 4). The Multi-walled nanotubes synthesized from respective precursors by spray pyrolysis method were used as adsorbent. The sorbent properties of these materials for the removal of Basic brown 4 dye from aqueous solution was studied. The effect of variables such as temperature, initial concentration, solution pH on the sorbent property of the materials in a batch mode contact time process was investigated. The influences of different factors on the adsorption of Basic brown 4 on these adsorbents were explained in terms of electrostatic fields on the Basic brown 4 dye molecule and on the surface of adsorbents. The specific rate constant measurements confirming the applicability of pseudo second order rate expression for the process. Thermodynamic parameters such as free energy change, enthalpy change and entropy change were calculated. The negative value of free energy change indicates that the Basic Brown dye adsorption process is spontaneous and the positive value of enthalpy change shows the endothermic in nature. The kinetic measurements enabled to propose possible mechanism of adsorption involved in this process.

Full Text

Reference


Basar, C.A., Applicabilityof the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard Mater., 135, 232-241  2006).

http://dx.doi.org/10.1016/ j.jhazmat.2005.11.055

Bhattacharya, A. K. and Venkobachar, C., Removal of Cd(II) by low cost adsorbents, J. Environ. Eng. Div., 110, 110-122(1984).

http://dx.doi.org/ 10.1061/(ASCE)0733-9372(1984)110:1(110)

Boyd, G.E., The exchange adsorption of ions from aqueous solutions by organic zeolites II. kinetics, J. Am. Chem. Soc., 69, 2836-48 (1947).

http:/ /dx.doi.org/10.1021/ja01203a066

Bystzejewski, M. and Pyrzynska, K., Kinetics of copper ion sprption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles, Colloids and Surface A;
Physicochem. Eng. Aspects,377, 402- 08(2011).

http://dx.doi.org/10.1016/j.colsurfa.2011.01.041

Chen A. and Chen S., Biosorption of azo dyes from aqueous solution byglutaraldehyde-crosslinked chitosans, J. Hazard Mater., 172, 1111-1121 (2009).

http://dx.doi.org/10.1016/j.jhazmat.2009.07.104 

Chien, S.H. and Clayton, W.R., Application of Elovich equation to kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44, 265-268 (1980).

http://dx.doi.org/10.2136/ sssaj1980.03615995004400020013x

Cruz, F.J.A.L., Esteves, I.A.A.C., Mota, J.P.B., Adsorption of light alkanes and alkenes onto singlewalled carbon nanotube bundles: Langmuirian analysis and molecular simulations, Colloids and Surfaces A: Physicochem. Eng. Aspects, 357, 43-52(2010).

http://dx.doi.org/10.1016/ j.colsurfa.2009.09.002

Fytianos, K., Voudrias, E. and Kokkalis, E., Sorption- desorption behavior of 2,4-dichlorophenol by marine sediments, Chemosphere. 40, 3-  (2000).

http://dx.doi.org/10.1016/S0045- 6535(99)00214-3

Geyikci, F., Adsorption of acid blue (AB161) dye from water by multi-walled carbon nanotubes, Fullerenes, Nanotubes, and Carbon Nanostruct., 21, 579-593 (2013).593 (2013).

http://dx.doi.org/10.1080/1536383X.2011.643428

Gupta, V.K., Mittal, A. and Gajbe, V., Adsorption and desorption studies of a water soluble dye quinoline yellow using waste materials. J. Colloid. Interface Sci., 284, 89-98 (2005).

http://http:/ /dx.doi.org/10.1016/j.jcis.2004.09.055

Ho, Y.S., John-Wase, D.A. and Forster, C.F., Study of the sorption ofdivalent metal ions ontopeat. Adsorption Sci. Technol. 18, 639- 650(2000).

http://ht tp: //dx.doi. org/ 10. 1260/ 0263617001493693

Inbaraj S. and Sulochana N., Evaluation of a carbonaceous sorbent prepared from pearl lillet
husk for its removal of basic dyes, J. Sci. Ind. Res., 61, 971-978 (2002).

Jambulingam, M., Karthikeyan, S., Sivakumar, P., Kiruthika J. and Maiyalagan T.,Characteristic studies of some activated carbons from agricultural wastes, J. Sci. and Ind. Res. 66(6), 495-500(2007)

Jambulingam, M., Renugadevi, N., Karthikeyan, S., Kiruthika J., Patabhi S., Adsorption of Cr(VI) from aquous solution using a low cost activated carbon, Indian J. Environ. Prot, 25(5), 458-463  2005.

Jaycock, M. J. and Parfitt, G.D., Chemistry of Interfaces. Ellis Horwood Limited Publishers,
Chichester, 1981.

Karthikeyan, S. and Mahalingam,P., Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine oilat different temperatures, Int. J. Nanotechnol. Appl., 4 (3), 189-197(2010a).

Karthikeyan, S., Mahalingam,P. and Karthik, M.,Large Scale Synthesis of Carbon
Nanotubes, E-J. Chem., 6(1), 1-12 (2009).

Karthikeyan, S. and Mahalingam,P.,Synthesis and characterization of multi-walled carbon
nanotubes from biodiesel oil: green nanotechnology route, Int. J. Green Nanotechnol: Phys chem.,2(2),39-46 (2010b).

Karthikeyan, S., Sivakumar, P. and Palanisamy P.N., Novel activated carbons from agricultural wastes and their characterization, E-J. Chem., 5, 409-426 (2008).

Kartikeyan S., Sakthivel, K. and Kannan, C.,Sorption dynamics and equilibrium uptake
of basic dye (basic brown 4) using jatropha curcas stem activated carbon, Rasayan J. chem.,
4 (3), 519-532 (2011).

Kuo, C.Y., Wu, C.H. and Wu, J. Y., Adsorption of direct dyes from aqueous solution by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters,
J.Colloid Interface Sci., 327, 308-315 (2008). 

http://dx.doi.org/10.1016/j.jcis.2008.08.038

Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska
Vetenskapsakademiens, Handlingar, band 24(4), 1-39 (1898).

Lata, H., Garg, V.K. and Gupta, R.K., Removal of a basic dye from aqueous solution by adsorption using parthenium hysterophorus: An agricultural waste. Dyes and Pigments, 74(3), 653- 658(2007) .

http://h tt p:/ /dx. doi .org/10.1016/ j.dyepig.2006.04.007

Li,Q.,Zhang,J., Hao, Y., He, M. and Liu, Z.,Thionine-mediated chemistry of carbon nanotubes,Carbon, 42, 287-291 (2004).

http://dx.doi.org/10.1016/j.carbon.2003.10.030

Macias-Garsia, A., Valenzuela, C. and Gomez Serrano, V., Adsorption of Pb2+ by heat treated and sulfurized activated carbon, Carbon, 31(8), 1249–1255 (1993).

http://dx.doi.org/10.1016/ 0008-6223(93)90083-M

Mahalingam, P., Parasuram, B., Maiyalagan, T. and Sundaram, S., Chemical Methods for purification of carbon nanotubes – a review, J. Environ. Nanotechnol., 1(1), 53-61 (2012).

Michelson, L.D., Gideon, P.G., Pace, E.G., Kutal, L.H., Removal of soluble mercury from wastewater by complexing techniques. US Dept Industry, Office of Water Research and Technology Bull No 74 (1975).

Palanisamy, P. N. and Sivakumar, P., Adsorption Studies of Basic Red 29 by a non-conventional activated carbon prepared from euphorbia antiquorum L, Int. J. Chem. Tech. Res., 1(3), 502-510 (2009).

Rao,G. P., Lu, C. and Su, F., Sorption of divalent metal ions from aqueous solution by carbon
nanotubes: a review,Sep. Purif. Technol., 58, 224-231 (2007). 

http://dx.doi.org/10.1016/ j.seppur.2006.12.006

Reichenberg,D., Properties of ion-exchage resin in relation to their structure. III. kinetics of
exchange. J. Am. Chem. Soc., 75, 589- 597(1953). 

http://htt p: //dx.doi .org/10. 1021/ ja01099a022

Sakthivel, K., Arockiaraj, I., Kannan, C. and Karthikeyan, S., Film-pore diffusion modeling for sorption of azo dye on to one and three dimensional nano structured carbon nanomaterials from japtropha curcas, J. Environ. Nanotechnol. 2(2), 66-75 (2013).

http://dx.doi.org/10.13074/jent.2013.06.132019

Shih, Y.H. and Li,M.S., Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J. Hazard. Mater., 154(1-3), 21-28 ( 2 0 0 8 )

http://h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j.jhazmat.2007.09.095

Shin, S. and Jang, J., Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions,Chem.Commun, 41, 4230-4232(2007).

http://dx.doi.org/10.1039/ b707706h

Simonyan, V.V., Johnson,J.K., Kuznetsova, A. and Yates JrJ.T.., Molecular simulation of xenon adsorption on single-walled carbon nanotubes, J. Chem. Phys., 114, 4180-4185(2001).

http://dx.doi.org/10.1063/1.1344234

Singh, K.P., Mohan, D., Sinha, S., Tondon,G. S.and Gosh, D., Color removal from waste water using low-cost activated carbon derived from agricultural waste material. Ind. Eng. Chem. Resour., 42, 1965-1976 (2003).

http://dx.doi.org/10.1021/ie020800d

Stafiej, A. and Pyrzynska, K., Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol., 58, 49-52 (2007).

http://dx.doi.org/ 10.1016/j.seppur.2007.07.008

Steel, R.D.G. and Torrie, J.H., Principles and procedures of statistics, McGraw Hill Co., New York, 481 (1960).

Wang, X.S., Zhoub, Y., Jiang, Y. and Sun, C., The removal of basic dyesfrom aqueous solution susing agricultural by-products. J. Hazard.Mater. 157, 374–385 (2008).

http://dx.doi.org/10.1016/j.jhazmat.2008.01.004

Weber, E.J. and Wolfe, N. L., Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems, Environ.Toxicol.Chem., 6, 911-919 ( 1 9 8 7 ) . 

http://h t t p : / / d x . d oi . o r g / 1 0 . 1 0 0 2 / etc.5620061202

Weber, W.J.Jr. and Morris, C.J., Kinetics of adsorption on carbon from solution, J. Sanit. Engg. Div., 89, 31- 60 (1963).

Xu,Y.J. and Li, J.Q., Interaction of molecular oxygen with active sites of graphite: A theoretical study. Chem. Phys. Lett. 400, 406- 412 (2004).

http://dx.doi.org/10.1016/ j.cplett.2004.11.010 62

Yang,O.B., Lim,J.C., Lee,J.S. and kim,Y.G, The use of activated carbon fiber for direct removal of iodine from acetic acid solution, Ind. Eng. Chem. Res., 32, 1692-1697 (1993).

http://dx.doi.org/10.1021/ie00020a023

Zhang, D., Zhang, C. and Zhou, P., Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water, J. Hazard Mater., 186, 971- 977(2011). 

http://ht tp:/ /dx. doi. org/ 10.1016/ j.jhazmat.2010.11.096

Contact Us

Powered by

Powered by OJS