Open Access

Biomedical Applications of Manganese and Cobalt Nanocomposites: a Review

D. Nagajothi, nagajothid@gmail.com
Department of Chemistry, Ayya Nadar Janaki Ammal College, Sivakasi, TN, India.
J. Maheswari Department of Chemistry, Ayya Nadar Janaki Ammal College, Sivakasi, TN, India.


J. Environ. Nanotechnol., Volume 9, No 1 (2020) pp. 60-67

https://doi.org/10.13074/jent.2020.03.194385

PDF


Abstract

In this review, the synthesis, characterization and biomedical applications of the manganese and cobalt nanocomposites were discussed. Nanocomposites and biomedical applications are the recent developments in the field of science and medicinal science. The age-old chaos pertaining to causality determination, complexities in diagnosis of the disease and the causality level have decreased due to these recent innovations. Generally, manganese and cobalt nanocomposites are synthesized by variety of methods like hydrothermal, sol-gel, co-precipitation, thermal decomposition, laser and micro-emulsion with suitable precursor and reagents. The synthesized manganese and cobalt nanocomposites can be characterized by AFM, XRD, FTIR, UV-Vis., DSC, TGA, NMR, SEM, TEM, EDS, CCD and VSM. In all the results, these nanocomposites have shown excellent fluorescence and magnetic properties. They are widely employed in the biomedical applications such as bio-imaging, drug delivery and diagnostics, owing to their low toxic effect and high fluorescent property to emit the state of the affected area of the organ in a precise manner.

Full Text

Reference


Allison Dennis, M., Won Jong Rhee and David Sotto, Quantum dot fluorescent protein FRET probes for sensing intracellular pH, 6(4), 2917-2924 (2012).

https://dx.doi.org/10.1021/nn2038077

Ansari, S. M., Bhor, R. D., Pai, K. R., Mazumder, S. and Sen, D., Size and chemistry controlled cobalt-ferrite nanoparticles and their anti-proliferative effect against the MCF-7 breast cancer cells, ACS Biomater. Sci. Eng., 2(12), 2139-2152 (2016).

https://dx.doi.org/10.1021/acsbiomaterials.6b00333

Bama Krishnan and Sundrarajan Mahalingam, Facile synthesis and antimicrobial activity of manganese oxide/bentonite nanocomposites, Res. Chem. Intermed., 43(4), 2351-2365(2016)

https://dx.doi.org/10.1007/s11164-016-2765-7.

Bettini, S., Pagano R. and Bonfrate, V., Promising piezoelectric properties of New ZnO@Octadecylamine Adduct, J. Phys. Chem., 119(34), 20143–20149 (2015).

https://dx.doi.org/10.1021/acs.jpcc.5b06013

Bhattacharyya, S., Kudgus, R. A., Bhattacharya, R. and Mukherjee, P., Inorganic nanoparticles in cancer therapy. Pharm. Res., 28(2), 237–259 (2011).

https://dx.doi.org/10.1007/s11095-010-0318-0

Chatterjee, D. K, Fong, L. S. and Zhang, Y., Nanoparticles in photodynamic therapy: an emerging paradigm, Adv. Drug Deliv. Rev., 60(15), 1627–1637 (2008).

https://dx.doi.org/10.1016/j.addr.2008.08.003

Chen, J. P., Sorensen, C. M., Klabunde, K. J. and Hadjipanayis, G. C., Magnetic properties of nanophase cobalt particles synthesized in inversed micelles, J. Appl. Phys., 76(10), 6316-6318 (1994).

https://dx.doi.org/10.1063/1.358280

Chung Jung Hung and Jeng Han Hung, Electrophoretic Fabrication and characterizations of manganese oxide/carbon nanotubes nanocomposites pseudo-capacitors, J. Electrochem. Soc., 158(8), 942-947 (2011).

https://dx.doi.org/10.1149/1.3601862

Colognato, R., Bonell, A. and Ponti J., Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro, Mutagenesis, 23(5), 377–382 (2008).

https://dx.doi.org/10.1093/mutage/gen024

Cui, H. J., Cai, J. K., Shi, J. W., Yuan, B. and Fu, M L., Synthesis of porous magnetic ferrite nano wires containing Mn and their application in water treatment, J. Mater. Chem., 1, 5902–5907 (2013).

https://dx.doi.org/10.1039/C3TA01692G

Cuizhu, H., Song, Q., Xinzhen, W., Jiurong, L., Liqiang, L., Wei, L., Masahiro, I. and Machida, K., Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties, J. Mater. Chem., 22, 22160–22166 (2012).

https://dx.doi.org/10.1039/C2JM33068G

Daniel, M. C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104(1), 293–346 (2004).

https://dx.doi.org/10.1021/cr030698+

Deborah, J., Jones, Etienne Wortham and Jacques Roziere, Manganese oxide nanocomposites: preparation and some electrochemical properties, J. Phys. Chem., 65(2), 235-239 (2014).

https://dx.doi.org/10.1016/j.jpcs.2003.10.020

Deyang Chen and Yuying Meng, Synthesis of magnetic oxide nanoparticles for biomedical applications, Glob. J. Nanomed., 2(3), 51-54 (2017)

https://dx.doi.org/10.19080/GJN.2017.02.555588

Doaga, A., Cojocariu, A. M. and Amin, W., Synthesis and characterizations of manganese ferrites for hyperthermia applications, Mater. Chem. Phys., 143, 305–310 (2013).

https://dx.doi.org/10.1016/j.matchemphys.2013.08.066

Dong, Y., Zhao, H., Liu, Y., Wu, X. and Pei, J., Shape-controlled synthesis of cobalt particles by a surfactant-free solvo-thermal method and their catalytic application to the thermal decomposition of ammonium perchlorate, Cryst. Eng. Comm., 17(47), 9062-9069 (2015).

https://dx.doi.org/10.1039/C5CE01424G

Fang, C. and Zhang, M., Multifunctional magnetic nanoparticles for medical imaging applications. J. Mater. Chem., 19(35), 6258–6266 (2009).

https://doi.org/10.1039/B902182E

Gornati, R., Pedretti, E., Rossi, F. and Cappellini, F., Zero valent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines, J. Appl. Toxicol., 36(3), 385-393 (2016).

https://dx.doi.org/10.1002/jat.3220

Harish Kumar, Dharm Veer and Rammehar Singh, Synthesis and characterization of pure CoO and Ni doped CoO-NiO-SiO2 nanocomposites using sol-gel technique, Chem. Sci. Trans., 7(1), 95-100 (2018).

https://dx.doi.org/10.7598/cst2018.1462

He, Y. Q., Nanoparticle fabrication using ambient biological resources, Appl. Nano. Sci., 19, 1113-1130 (2009).

Howes, P. D., Chandrawati, R. and Stevens, M. M., Colloidal nanoparticles as advanced biological sensors, Science, 346(6205), 1247390 (2014).

https://dx.doi.org/10.1126/science.1247390

Hua-Jun Qiu, Li Liu, Yan-PingMu, Hui-Juan and Yu Wang, Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices, Nano Res., 8, 321–339 (2014).

https://dx.doi.org/10.1007/s12274-014-0589-6

Huang, W. Y. and Davis, J. J., Multimodality and nanoparticles in medical imaging, Dalton Trans., 40(23), 6087–6103 (2011).

https://dx.doi.org/10.1039/C0DT01656J

Jain, S., Coulter, J. A., Hounsell, A. R. and Butterworth, K. T., Cell specific radio sensitization by gold nanoparticles at megavoltage radiation energies, Int. J. Radiat. Oncol. Biol. Phys., 79(2), 531–539 (2011).

https://dx.doi.org/10.1016/j.ijrobp.2010.08.044

Karrina McNamara and Syed A. M., Tofail Nanoparticles in biomedical applications, Adv. Phys. X., 2(1), 54-88 (2017)

https://dx.doi.org/10.1080/23746149.2016.1254570

Keall, P. J., Barton, M., Crozier, S., Australian MRI-Linac Program The Australian magnetic resonance imaging-linac program, Semin Radiat Oncol., 24(3), 203–216 (2014).

https://dx.doi.org/10.1016/j.semradonc.2014.02.015.

Kharlamova, M. V. and Eliseev, A. A., Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides, J. Phys. Conf. Ser., 345, 1-5 (2012)

https://dx.doi.org/10.1088/1742-6596/345/1/012034

Kumar, S., Kumar, A., Shah, P., Rai, S. N., Panguluri, S. K. and Kakar, S. S., Micro RNA signature of cis-platin resistant vs. cisplatin sensitive ovarian cancer cell lines, J. Ovarian Res., 10, 1-11(2011).

https://dx.doi.org/10.1186/s13048-016-0301-4

Lagendijk, J. J., Raaymakers, B. W. and Vulpen, M., The magnetic resonance imaging-linac system, Semin. Radiat. Oncol., 24(3), 207–209 (2014).

https://dx.doi.org/10.1016/j.semradonc.2014.02.009

Lai, J. and Shafi, M., Mixed iron-Manganese oxide nanoparticles, J. Phys. Chem. B., 226, 561–562 (2003).

https://dx.doi.org/10.1021/jp049913w

Li, C. C., Yin, X. M., Chen, L. B., Li, Q. H. and Wang, T. H., Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties, Chem. Eur. J., 16(17), 5215-5221 (2010).

https://dx.doi.org/10.1002/chem.200901632

Li, Z, Gao, K. and Han, G., Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties, New J. Chem., 39(1), 361–368 (2015).

https://dx.doi.org/10.1039/C4NJ01466A

Limaye, M. V., Singh, S. B., Date, S. K., High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature, J. Phys. Chem. B., 113(27), 9070-9076 (2009).

https://dx.doi.org/10.1021/jp810975v

Lin, X. M., Sorensen, C. M., Klabunde, K. J. and Hadjipanayis, G. C., Temperature dependence of morphology and magnetic properties of cobalt nanoparticles prepared by an inverse micelle technique, Langmuir, 14(25), 7140-7146 (1998).

https://dx.doi.org/10.1021/la980509w

Ling, D. and Hyeon, T., Chemical design of biocompatible iron oxide nanoparticles for medical applications, Small, 9(9), 1450-1466 (2013)

https://dx.doi.org/10.1002/smll.201202111

Lou, X. W., Deng, D., Lee, J. Y. and Archer, L. A., Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties, J. Mater. Chem., 18(37), 4397-4401 (2008).

https://dx.doi.org/10.1039/B810093D

Mahmoudian, M. R. and Alias, Y., Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide, Sens. Acutators B., 201, 526-534 (2014).

https://dx.doi.org/10.1016/j.snb.2014.05.030

Mayank Bhushan, Yogesh Kumar and Latha, Annamraju Antibacterial applications of α‑Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics, Appl. Nanosci., 8, 137–153 (2017).

https://dx.doi.org/10.1007/s13204-018-0656-5

Meysam Soleymani and Mohammad Edrissi, Preparation of manganese-based perovskite nanoparticles using a reverse micro emulsion method: Biomedical applications, Bull Mater Sci., 39, 487-490 (2016).

https://dx.doi.org/10.1007/s12034-016-1164-4

Michele Karoline, Lima-Tenório and Carlos Sergio Ferreira, Pseudo capacitance properties of Co3O4 nanoparticles synthesized using a modified sol- gel method, Mat. Res., 21(2), 01-07 (2018).

https://dx.doi.org/10.1590/1980-5373-MR-2017-0521

Montiel, M. G., Jacinto, P. S., Gongora, I. D., Reguera, E. and Gattorno, G. R., Synthesis and thermal behavior of metallic cobalt micro and nanostructures, Nano. Micro. Lett., 3(1), 12-19 (2011) .

https://dx.doi.org/10.1007/BF03353646

Nelson, A., Patrick, O. and Ndidi, C., Nanotechnology and Drug delivery, Trop. J. Pharm. Res., 8(3), 265-274 (2009).

Ovanovi, S., Spreitzer, M., Tram ek Trontelj, Z. and Suvorov, D., Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles, J. Phys. Chem., 118(25), 13844-13856 (2014).

https://dx.doi.org/10.1021/jp500578f

Pankhurst, Q. A., Thanh, K., Jones, S. K. and Dobson, J., Progress in applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 42(22), 224001-224015 (2009).

Papisa, E., Rossi, F. and Raspantib, M., Engineered cobalt oxide nanoparticles readily enter cells, Toxicology Lett., 189(3), 253–259 (2009) .

https://dx.doi.org/10.1016/j.toxlet.2009.06.851

Peng, L. H., Niu, J., Zhang, C. Z., Yu, W., Wu, J. H. and Shan, Y. H., TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells, Biomater., 35(21), 5605–5618 (2014).

https://dx.doi.org/10.1016/j.biomaterials.2014.03.062

Pugazhradivu, S. K, Ramachandran, K. and Tamilarasan, K., Synthesis and characterization of cobalt and manganese oxide nanoparticles by chemical route, Physics Procedia., 49, 205 – 216 (2013).

https://dx.doi.org/10.1016/j.phpro.2013.10.028

Puntes, V. F., Krishnan, K. M. and Alivisatos, A. P., Colloidal nanocrystal shape and size control: the case of cobalt, Science, 291(5511), 2115–2117(2001).

https://dx.doi.org/10.1126/science.1057553

Rajib Ghosh, Chaudhuri and Santanu Paria, Core/ Shell Nanoparticles: Classes, properties, synthesis Mechanisms, characterization and applications, Chem. Rev., 112(4), 2373–2433 (2012).

https://dx.doi.org/10.1021/cr100449n

Respaud, M., Broto, J. M., Rakoto, H. and Fert, A. R., Surface effects on the magnetic properties of ultrafine cobalt particles, Phys. Rev. B., 57(5), 2925-2935 (1998).

https://dx.doi.org/10.1103/PhysRevB.57.2925

Sabbioni, E., Fortaner, S. and Farina, M., Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model, Nanotoxicology., 8(4), 455-464 (2013).

https://dx.doi.org/10.3109/17435390.2013.796538

Sabbioni, E., Fortaner, S. and Farina, M., Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts, Nanotoxicology., 8(1), 88–99 (2014).

https://dx.doi.org/10.3109/17435390.2012.752051

Shouheng, S. and Murray, C, B., Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic super lattices, J. Appl. Phys., 85(8), 4325-4330 (1999).

https://dx.doi.org/10.1063/1.370357

Thanha, K. and Green, L. A. W., Functionalisation of nanoparticles for biomedical applications, Nano Today., 119, 503-516 (2015).

https://dx.doi.org/10.1016/j.nantod.2010.05.003

Tian, L., Zou, H. L. and Fu, J. X., Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance, Adv. Funct. Mater., 20(4), 617-623 (2010).

https://dx.doi.org/10.1002/adfm.200901503

Tse, B. W., Cowin, G. J. and Soekmadji, C., PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer, Nanomedicine (Lond), 10(3), 375–386 (2015).

https://dx.doi.org/10.2217/nnm.14.122

Vestal, C. R. and Zhang, Z. J., Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc., 125(32), 9828-9833 (2003).

https://dx.doi.org/10.1021/ja035474n

Warner, C. L., Chouyyok, W. and Mackie, K. E., Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent, Langmuir, 28(8), 3931–3937 (2012).

https://dx.doi.org/10.1021/la2042235

Weddemann, A, Ennen, I. and Regtmeier, A, Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors, J. Nanotechnol., 1, 75-93(2010).

https://dx.doi.org/10.3762/bjnano.1.10

Wolfe, T., Chatter Jee, D., Lee, J. and Grant, J. D., Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo, Nanomedicine, 11(5), 1277–1283 (2015).

https://dx.doi.org/10.1016/j.nano.2014.12.016

Yin Xunjun, Shougang Chen and Aiguo Wu, Green chemistry synthesis of gold nanoparticles using lactic acid as a reducing agents, Micro. Nano. Lett., 5(5), 270-273 (2010).

https://dx.doi.org/1049/mnl.2010.0117

Zhang, Y. J, Yao, Q. and Zhang, Y., Solvo-thermal synthesis of magnetic chains self-assembled by flowerlike cobalt sub-microspheres, Cryst. Growth., 8(9), 3206-3212 (2008).

https://dx.doi.org/10.1021/cg7010452

Contact Us

Powered by

Powered by OJS