Open Access

Comprehensive Review of Latest e-Nose Sensor Technologies

P.Gowdhaman, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India. T. Venkatesan, , Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India. R. Banupriya, Department of Physics, Gobi Arts and Science College, Erode, TN, India. A. T. Nimal, Solid State Physics Laboratory, DRDO, New Delhi, India. Haresh M. Pandya haresh.pandya@rediffmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India.


J. Environ. Nanotechnol., Volume 9, No 1 (2020) pp. 31-41

https://doi.org/10.13074/jent.2020.03.201397

PDF


Abstract

ISO  14001 environmental management system standard was developed by an internationally selected standards committee to help all types of organizations develop plans to minimize their brunt on the environment aspects specially to minimize air pollution. ISO 14001:2015 helps an organization to achieve the planned outcomes of its environmental management system, which provide value for the environment and the organization. The main aim of this paper is to identify whether ISO  14001 certificate is need for an educational institution and to identify the environmental issues and finding the significant improvement in the organizational performance due to the certification.  An Environmental Management System (EMS) is a part of an organization’s overall management system. It is a systematic approach dealing with environmental aspects of an organization. A structural framework issued to help us to manage, evaluate and improve its environmental performance in a verifiable way. As part of its EMS, the university implemented a ‘plan–do–check–act’ (PDCA) cycle for controlling and continuously (Constantly) improving its environmental performance.

Full Text

Reference


Abel, S. B., Olejnik, R., Rivarola, C. R., Slobodian, P., Saha, P., Acevedo, D. F., Barbero, C. A., Resistive Sensors for Organic Vapors Based on

Nanostructured and Chemically Modified Polyanilines, IEEE Sens. J., 18(16), 6510–6516(2018).

https://dx.doi.org/10.1109/JSEN.2018.2848843

Aid, F., CBRNE - Chemical Warfare Agents, Alizadeh, T., Hamedsoltani, L., Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design, Mater. Chem. Phys., 183, 181–190(2016).

https://dx.doi.org/10.1016/j.matchemphys.2016.08.017

Anderson, T., Ren, F., Pearton, S., Kang, B. S., Wang, H. T., Chang, C. Y., Lin, J., Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices, Sensors (Switzerland), 9(6), 4669–4694(2009).

https://dx.doi.org/10.3390/s90604669

Arshak, K., Moore, E., Lyons, G. M., Harris, J.,Clifford, S., A review of gas sensors employed in electronic nose applications, Sens. Rev., 24(2), 181– 198(2004).

https://dxdoi.org/10.1108/02602280410525977

Banu Priya, R., Venkatesan, T., Pandiyarajan, G., Haresh M, P., SAW Devices - A Comprehensive Review, J. Environ. Nanotechnol., 3(3), 106–115(2014).

https://dx.doi.org/10.13074/jent.2014.09.143101

Benetti, M., Cannatà, D., Verona, E., Palla Papavlu, A., Dinca, V. C., Lippert, T., Dinescu, M., DiPietrantonio, F., Highly selective surface acoustic wave e-nose implemented by laser direct writing, Sensors Actuators, B Chem., 154–162(2019).

https://dx.doi.org/10.1016/j.snb.2018.12.005

Bhasker Raj, V., Nimal, A. T., Parmar, Y., Sharma, M. U., Gupta, V., Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor, Sensors Actuators, B Chem., 166-167, 576–585(2012).

https://dx.doi.org/10.1016/j.snb.2012.03.013

Bhasker Raj, V., Singh, H., Nimal, A. T., Tomar, M., Sharma, M. U., Gupta, V., Effect of metal oxide sensing layers on the distinct detection of ammonia using surface acoustic wave (SAW) sensors, Sensors Actuators, B Chem. 187, 563–573 (2013).

https://dx.doi.org/10.1016/j.snb.2013.04.063

Binions, R., Naik, A. J. T., Metal oxide semiconductor gas sensors in environmental monitoring, Woodhead Publishing Limited.

Bogue, R., Technology Roadmap: Optoelectronic Gas Sensors in the Petrochemicals, Gas and Water Industries, In: Technology Roadmap : Optoelectronic Gas Sensors in the Petrochemicals , Gas and Water Industries, 01–59(2006).

Bui, T., Morana, B., Scholtes, T., Duc, T. C., Sarro, P. M., Bui, T., Morana, B., Scholtes, T., Duc, T. C., A mixing surface acoustic wave device for liquid sensing applications : Design , simulation , and analysis A mixing surface acoustic wave device for liquid sensing applications : Design, simulation and analysis, J. Appl. Phys., 120, 074504(2016).

https://dx.doi.org/10.1063/1.4961214

Bunte, G., H??rttlen, J., Pontius, H., Hartlieb, K., Krause, H., Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers, Anal. Chim. Acta., 591(1 SPEC. ISS.), 49–56(2007).

https://dx.doi.org/10.1016/j.aca.2007.02.014

Burian, C., Brezmes, J., Vinaixa, M., Cañellas, N., Llobet, E., Vilanova, X., Correig, X., MS-electronic nose performance improvement using the retention time dimension and two-way and three-way data processing methods, Sensors Actuators, B Chem., 143(2), 759–768(2010).

https://dx.doi.org/10.1016/j.snb.2009.10.015

Cheeke, J. D. N., Wang, Z., Acoustic wave gas sensors, Sensors Actuators B Chem., 59(2-3), 146–153(1999).

https://dx.doi.org/10.1016/S0925-4005(99)00212-9

Cochrane, C., Hertleer, C., Schwarz-Pfeiffer, A., Smart textiles in health. Elsevier Ltd Cosio, M. S., Scampicchio, M., Benedetti, S., Electronic Noses and Tongues, Chem. Anal. Food Tech. Appl., 219–247(2012).

https://dx.doi.org/10.1016/B978-0-12-384862-8.00008-X

Devkota, J., Ohodnicki, P., Greve, D., SAW Sensors for Chemical Vapors and Gases, Sensors, 17(4), 801 (2017).

https://dx.doi.org/10.3390/s17040801

Gardner, J. W., Bartlett, P. N., “A brief history of electronic noses” Sensors & Actuators B, Sensors Actuators B., 19(18– 19), 211– 20(1994).

Gole, J. L., Lewis, S. E., Porous Silicon-Sensors and future applications, Nano silicon, 149–175(2008).

https://dx.doi.org/10.1016/B978-008044528-1.50005-1

Gongora, A., Monroy, J., Gonzalez-Jimenez, J., An Electronic Architecture for Multipurpose Artificial Noses, J. Sensors, 5427693(2018).

https://dx.doi.org/10.1155/2018/5427693

Gowdhaman, P., Venkatesan, T., Haresh M., P., Review of surface acoustic wave sensors for the detection and identification of toxic environmental gases/vapours, Arch. Acoust., 43(3), 357–367(2018).

https://dx.doi.org/10.24425/123908

Haresh M, P., Sharma, M. U., Nimal, A. T., Rajesh, K. B., Impulse Modelled Response of a 300 MHz STQuartz SAW Device For Sensor Specific Applications, J. Environ. Nanotechnol., 2, 15–21(2013).

https://dx.doi.org/10.13074/jent.2013.02.nciset33

Hosseini, M., Hamdy Makhlouf, A. S., Sensory Polymers for Detecting Explosives and Chemical Warfare Agents, In: Industrial Applications for Intelligent Polymers and Coatings, 553-576(2016).

https://dx.doi.org/10.1007/978-3-319-26893-4_26

Kannan, G., Nimal, A., Mittal, U., Yadava, R. D., Kapoor, J., Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection, Sensors Actuators B Chem., 101(3), 328–334 (2004).

https://dx.doi.org/10.1016/j.snb.2004.04.003

Keller, P. E., Electronic noses and their applications, In: IEEE Northcon/Technical Appl. Conf. Laquintinie, P. S., Sachan, A., Feller, J. F., Lahuec, C., Castro, M., Seguin, F., Dupont, L., A functionalized carbon nanotube based electronic nose for the detection of nerve agents, 2018 25th IEEE Int. Conf. Electron. Circuits Syst., ICECS, 2018(1), 705–708(2019).

https://dx.doi.org/10.1109/ICECS.2018.8617932

Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H., A Survey on Gas Sensing Technology, Sensors 12(7), 9635–9665(2012).

https://dx.doi.org/10.3390/s120709635

Nimal, A. T., Mittal, U., Singh, M., Khaneja, M., Kannan, G. K., Kapoor, J. C., Dubey, V., Gutch, P. K., Lal, G., Vyas, K. D., Gupta, D. C., Development of handheld SAW vapor sensors for explosives and CW agents, Sensors Actuators, B Chem., 135(2), 399–410 (2009).

https://dx.doi.org/10.1016/j.snb.2008.08.040

Nimal, A. T., Singh, M., Mittal, U., Yadava, R. D. S., A comparative analysis of one-port Colpitt and twoport Pierce SAW oscillators for DMMP vapor sensing, Sensors Actuators, B Chem., 114(1), 316–325(2006).

https://dx.doi.org/10.1016/j.snb.2005.05.021

Pandya, M. H., Design and Modelling of Surface Acoustic Wave (SAW) Devices and Sensors, Bharathiar University. Priya, R. B., Venkatesan, T., Pandya, H. M., A Comparison of Surface Acoustic Wave ( SAW ) Delay Line Modelling Techniques for Sensor

Applications, J. Environ. Nanotechnol. 5(2), 42–47 (2016).

https://dx.doi.org/10.13074/jent.2016.06.162193

Raj, V. B., Nimal, A. T., Parmar, Y., Sharma, M. U., Sreenivas, K., Gupta, V., Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor, Sensors Actuators, B Chem. 147(2), 517–524 (2010).

https://dx.doi.org/10.1016/j.snb.2010.03.079

Raj, V. B., Singh, H., Nimal, a T., Sharma, M. U., Gupta, V., Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sensors Actuators, B Chem. 178, 636–647 (2013).

https://dx.doi.org/10.1016/j.snb.2012.12.074

Sayago, I., Aleixandre, M., Santos, J. P., Development of Tin oxide-based nanosensors for electronic nose environmental applications, Biosensors.

https://dx.doi.org/10.3390/bios9010021

Schaller, E., Bosset, J. O., Escher, F., “Electronic Noses” and Their Application to Food, Acad. Press 31(4), 305–316 (1998).

Scott, S. M., James, D., Ali, Z., Data analysis for electronic nose systems, Microchim. Acta 156(3-4), 183–207 (2006).

https://dx.doi.org/10.1007/s00604-006-0623-9

Sharma, M. U., Kumar, D., Koul, S. K., Venkatesan, T., Pandiyarajan, G., Nimal, A. T., Kumar, P. R., Pandya, H. M., Modelling of SAW Devices for Gas Sensing Applications – A Comparison, J. Environ. Nanotechnol 3(4), 63–66 (2014).

https://dx.doi.org/10.13074/jent.2014.12.144110

Singh, H., Raj, V. B., Kumar, J., Durani, F., Mishra, M., Nimal, A. T., Sharma, M. U., SAW mono sensor for identification of harmful vapors using PCA and ANN, Process Saf. Environ. Prot. 102, 577–588 (2016).

https://dx.doi.org/10.1016/j.psep.2016.05.014

Tripathi, K. M., Sachan, A., Castro, M., Choudhary, V., Sonkar, S. K., Feller, J. F., Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers, Sustain. Mater. Technol. 16(2017), 1–11 (2018).

https://dx.doi.org/10.1016/j.susmat.2018.01.001

Venkatesan, T., Haresh M, P., Surface Acoustic Wave Devices and Sensors - A Short Review On Design and Modelling by Impulse Response, J. Environ. Nanotechnol., 2(3), 81–89(2013).

https://dx.doi.org/10.13074/jent.2013.09.132034

Venkatesan, T., Pandya, H. M., Surface Acoustic Wave Devices and Sensors - A Short Review On Design and Modelling by Impulse Response, J. Environ. Nanotechnol. 2(3), 81–90 (2013).

War, F. W., War, S. W., Annex 1: chemical agents 1., Xu, Y.-L., He, J., Sensors and sensory systems, In: Smart Civil Structures. CRC Press, Boca Raton : Taylor & Francis, CRC Press, pp 61–85(2017)

https://dx.doi.org/10.1201/9781315368917.ch3

Contact Us

Powered by

Powered by OJS