Structural and Photo-electrochemical (PEC) Cell Properties of Cd1-x Znx Se Films
J. Environ. Nanotechnol., Volume 9, No 1 (2020) pp. 05-10
Abstract
In the present work, cadmium zinc selenide ( ) ternary alloy compounds were prepared on glass substrates for various concentrations by Electron beam evaporation method (PVD: EBE), under a pressure of 1 x 10-5 mbar. Structural, spectral response and photo-electrochemical properties of films have been studied. Structural studies by X-ray diffractogram (XRD) revealed the polycrystalline nature of the as-prepared films. Full Width Half Maximum (FWHM) value was observed from the XRD pattern; the same was used to find the microstructure properties of the films. XRD characterization of the films indicated hexagonal structure with strong preferential orientation of the crystallites along (0 0 2) direction. The normalized spectral response curve has shown that the peaks were shifted to higher wavelength side with incorporation of higher zinc content into the CdSe lattice. The analysis of I-V curve for Cd0.8Zn0.2Se films has given the highest values for VOC, ISC, FF and h%. Conversion efficiency was continuously decreasing from 4.5 to 1.93 with increasing zinc content from 0.2 to 0.8.
Full Text
Reference
Banfi, G., Degiorgio, V., Tan, H. M., Optical nonlinearity of semiconductor-doped glasses at frequencies below the band gap: the role of free carriers, J. Opt. Soc. Am., B 12(4), 621(1995).
http://dx.doi.org/10.1364/JOSAB.12.000621
Bouroushian, M., Karoussos, D., Kosanovic, T., Photoelectrochemical properties of electrodeposited CdSe and CdSe/ZnSe thin films in sulphidepolysulphide and ferro-ferricyanide redox systems, Solid State Ionics, 177(19–25), 1855–1859(2006).
http://dx.doi.org/10.1016/j.ssi.2006.06.002
Chandra Babu, K. S., Srivastava, O. N., Rao, S., Photoelectrochemical solar cells: Present status, Curr. Sci. 66, 715–729(1994).
Chandra, S., Pandey, R. K., Photoelectrochemical cell for solar energy conversion using electrodeposited CdSe films, Phys. Status Solids., 59(2), 787–794(1980).
http://dx.doi.org/10.1002/pssa.2210590246
Chandramohan, R., Preparation and characterization of semiconducting Zn1−xCdxSe thin films, Sol. Energy Mater. Sol. Cells., 81(3), 371–378(2004).
http://dx.doi.org/10.1016/j.solmat.2003.11.013
Deshmukh, L. P., Rotti, C. B., Garadkar, K. M., Cd1 − xZnxS thin film electrode for photoelectrochemical (PEC) applications, Mater. Chem. Phys., 50(1), 45–49(1997).
http://dx.doi.org/10.1016/S0254-0584(97)80182-4
Esparza-Ponce, H. E., Hernández-Borja, J., ReyesRojas, A., Cervantes-Sánchez, M., Vorobiev, Y. V., Ramírez-Bon, R., Pérez-Robles, J. F., GonzálezHernández, J., Growth technology, X-ray and optical properties of CdSe thin films, Mater. Chem. Phys., 113(2–3), 824–828(2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.08.060
Fitzmorris, B. C., Cooper, J. K., Edberg, J., Gul, S., Guo, J., Zhang, J. Z., Synthesis and Structural, Optical, and Dynamic Properties of Core/Shell/Shell CdSe/ZnSe/ZnS Quantum Dots, J. Phys. Chem. C., 116(47), 25065–25073(2012).
http://dx.doi.org/10.1021/jp3092013
Fujishima, A., Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238(5358), 37–38(1972).
http://dx.doi.org/10.1038/238037a0
Gerischer, H., The role of the semiconductor structure and surface properties in photoelectrochemical processes, J. Electroanal. Chem. Interfacial Electrochem., 150(1–2), 553–569(1983).
http://dx.doi.org/10.1016/S0022-0728(83)80235-6
Gruszecki, T., Holmstrom, B., Preparation of thin films of polycrystalline CdSe for solar energy conversion I. A literature survey, Sol. Energy Mater. Sol. Cells., 31(2), 227–234(1993).
http://dx.doi.org/10.1016/0927-0248(93)90053-6
Gur, I., Fromer, N. A., Alivisatos, A. P., Controlled Assembly of Hybrid Bulk−Heterojunction Solar Cells by Sequential Deposition †, J. Phys. Chem. B., 110(50), 25543–25546(2006).
http://dx.doi.org/10.1021/jp0652852
Hankare, P. P., Bhuse, V. M., Garadkar, K. M., Delekar, S. D., Bhagat, P. R., CdHgSe thin films: preparation, characterization and optoelectronic studies, Semicond. Sci. Technol., 19(2), 277–284(2004).
http://dx.doi.org/10.1088/0268-1242/19/2/027
Kniprath, R., Rabe, J. P., McLeskey, J. T., Wang, D., Kirstein, S., Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components, Thin Solid Films, 518(1), 295–298(2009).
http://dx.doi.org/10.1016/j.tsf.2009.06.039
Licht, S., Davis, J., Disproportionation of Aqueous Sulfur and Sulfide: Kinetics of Polysulfide Decomposition, J. Phys. Chem. B., 101(14), 2540–2545(1997).
http://dx.doi.org/10.1021/jp962661h
Mariappan, R., Ponnuswamy, V., Ragavendar, M., Characterization of CdS1−Se thin films by chemical bath deposition technique, Optik (Stuttg)., 123(13), 1196–1200(2012).
http://dx.doi.org/10.1016/j.ijleo.2011.07.050
Ramaiah, K. S., Su, Y. K., Chang, S. J., Juang, F. S., Ohdaira, K., Shiraki, Y., Liu, H. P., Chen, I. G., Bhatnagar, A. K., Characterization of Cu doped CdSe thin films grown by vacuum evaporation, J. Cryst. Growth, 224(1–2), 74–82(2001).
http://dx.doi.org/10.1016/S0022-0248(01)00697-2
Van Calster, A., Vervaet, A., De Rycke, I., De Baets, J., Vanfleteren, J., Polycrystalline CdSe films for thin film transistors, J. Cryst. Growth, 86(1–4), 924–928(1988).
http://dx.doi.org/10.1016/0022-0248(90)90826-7
Wang, C.-I., Yang, Z., Periasamy, A. P., Chang, H.-T., High-Efficiency Photochemical Water Splitting of CdZnS/CdZnSe Nanostructures, J. Mater., 01–07(2013).
http://dx.doi.org/10.1155/2013/703985
Wang, D., Jakobson, H. P., Kou, R., Tang, J., Fineman, R. Z., Yu, D., Lu, Y., Metal and Semiconductor Nanowire Network Thin Films with Hierarchical Pore Structures, Chem. Mater., 18(18), 4231– 4237(2006).
http://dx.doi.org/10.1021/cm052216b
Winder, E. J., Moore, D. E., Neu, D. R., Ellis, A. B., Geisz, J. F., Kuech, T. F., Detection of ammonia, phosphine, and arsine gases by reversible modulation of cadmium selenide photoluminescence intensity, J. Cryst. Growth, 148(1–2), 63–69(1995).