Indium Nitride Nanostructures Prepared by Various Growth Techniques
J. Environ. Nanotechnol., Volume 8, No 4 (2019) pp. 38-44
Abstract
In the last few years the interest in the material properties of Indium Nitride (InN) semiconductor has been remarkable. There have been significant improvements in the properties and growth methods of InN nanowires (NWs). High quality single crystalline InN NWs with a high-growth rate are regularly obtained. InN NWs exhibit a highly conducting quasi-two-dimensional electron gas (2DEG) on their surface, which causes nearly metallic conductivity even at low temperatures. The newly verified narrow bandgap (~0.69 eV) of InN extends the spectral range covered by III-nitrides to near-infrared, which offers a great advantage of nitrides for optoelectronic applications. In this article, the work accomplished in the InN NW research has been reviewed from the evolution. The growth, characterization and recent developments in InN NW research has been focused mainly. The most popular growth techniques, Metal-organic chemical vapor deposition (MOCVD) and Molecular beam epitaxy (MBE) were discussed in detail. Important phenomena in the growth of InN NWs, as well as the problems remaining for future study, were also addressed.
Full Text
Reference
Adachi, M., InGaN based green laser diodes on semipolar GaN substrate, Jpn. J. Appl. Phys., 53(10), 100207 (2014).
https://dx.doi.org/10.7567/JJAP.53.100207
Adachi, M., Yoshizumi, Y., Enya, Y., Kyono, T., Sumitomo, T., Tokuyama, S., Takagi, S., Sumiyoshi, K., Saga, N., Ikegami, T., Ueno, M., Katayama, K. and Nakamura, T., Low Threshold Current Density InGaN Based 520–530 nm Green Laser Diodes on Semi-Polar {20bar21} Free-Standing GaN Substrates, Appl. Phys. Express., 3(12), 121001 (2010).
https://dx.doi.org/10.1143/APEX.3.121001
Ariyawansa, G., Rinzan, M. B. M., Alevli, M., Strassburg, M., Dietz, N., Perera, A. G. U., Matsik, S. G., Asghar, A., Ferguson, I. T., Luo, H., Bezinger, A. and Liu, H. C., GaN∕AlGaN ultraviolet/infrared dual-band detector, Appl. Phys. Lett., 89(9), 091113 (2006).
https://dx.doi.org/10.1063/1.2345226
Babichev, A. V., Zhang, H., Lavenus, P., Julien, F. H., Egorov, A. Y., Lin, Y. T., Tu, L. W. and Tchernycheva, M., GaN nanowire ultraviolet photodetector with a graphene transparent contact, Appl. Phys. Lett., 103(20), 201103 (2013).
https://dx.doi.org/10.1063/1.4829756
Barick, B. K., Rodríguez-Fernández, C., Cantarero, A. and Dhar, S., Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method, AIP Adv., 5(5), 057162 (2015).
https://dx.doi.org/10.1063/1.4921946
Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D. and Ruden, P. P., Ensemble Monte Carlo study of electron transport in wurtzite InN, J. Appl. Phys., 85(2), 916–923 (1999).
https://dx.doi.org/10.1063/1.369211
Chao, C. K., Chyi, J.-I., Hsiao, C. N., Kei, C. C., Kuo, S. Y., Chang, H.-S. and Hsu, T. M., Catalyst-free growth of indium nitride nanorods by chemical-beam epitaxy, Appl. Phys. Lett., 88(23), 233111 (2006).
https://dx.doi.org/10.1063/1.2210296
Chen, L., Li, Y., Xiu, X., Chen, D., Hua, X., Xie, Z., Chen, P., Liu, B., Han, P., Zhang, R. and Zheng, Y., Stress-free InN nanowires grown on graphene by sublimation method, Mater. Lett., 211, 165–167 (2018).
https://dx.doi.org/10.1016/j.matlet.2017.10.007
Chen, R.-S., Yang, T.-H., Chen, H.-Y., Chen, L.-C., Chen, K.-H., Yang, Y.-J., Su, C.-H. and Lin, C.-R., High-gain photoconductivity in semiconducting InN nanowires, Appl. Phys. Lett., 95(16), 162112 (2009).
https://dx.doi.org/10.1063/1.3242023
Chen, W.-C., Kuo, S.-Y., Wang, W.-L., Tian, J.-S., Lin, W.-T., Lai, F.-I. and Chang, L., Study of InN epitaxial films and nanorods grown on GaN template by RF-MOMBE, Nanoscale Res. Lett., 7(1), 468 (2012).
https://dx.doi.org/10.1186/1556-276X-7-468
Dwivedi, S. M. M. D., Chakrabartty, S., Ghadi, H., Murkute, P., Chavan, V., Chakrabarti, S., Bhunia, S. and Mondal, A., Pine shaped InN nanostructure growth via vapour transport method by own shadowing and infrared detection, J. Alloys Compd., 722, 872–877 (2017).
https://dx.doi.org/10.1016/j.jallcom.2017.06.184
Foutz, B. E., O’Leary, S. K., Shur, M. S. and Eastman, L. F., Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl. Phys., 85(11), 7727–7734 (1999).
https://dx.doi.org/10.1063/1.370577
Grandal, J., Sánchez-García, M. A., Calle, F. and Calleja, E., Morphology and optical properties of InN layers grown by molecular beam epitaxy on silicon substrates, Phys. status solidi 2(7), 2289–2292 (2005).
https://dx.doi.org/10.1002/pssc.200461571
Guosheng Cheng, Cimpoiasu, E., Stern, E., Munden, R., Pradhan, N., Sanders, A., and Reed, M. A., Catalyst-free synthesis routine to indium nitride nanowires, In: 5th IEEE Conference on Nanotechnology, 2005. IEEE, pp 601–603.
Huang, C.-T., Song, J., Tsai, C.-M., Lee, W.-F., Lien, D.-H., Gao, Z., Hao, Y., Chen, L.-J. and Wang, Z. L., Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage, Adv. Mater., 22(36), 4008–4013
(2010).
https://dx.doi.org/10.1002/adma.201000981
Jiang, L. F., Shen, W. Z. and Guo, Q. X., Temperature dependence of the optical properties of Al InN, J. Appl. Phys., 106(1), 013515 (2009).
https://dx.doi.org/10.1063/1.3160299
Johnson, M. C., Lee, C. J., Bourret-Courchesne, E. D., Konsek, S. L., Aloni, S., Han, W. Q. and Zettl, A., Growth and morphology of 0.80eV photoemitting indium nitride nanowires, Appl. Phys. Lett., 85(23), 5670–5672 (2004).
https://dx.doi.org/10.1063/1.1831563
Kim, E., Rho, J., Ryu, S., Hwang, D., Lee, Y. and Kim, K., Grigoropoulos, C., Length-controlled and selective growth of individual indium nitride nanowires by localized laser heating, Appl. Phys. Express., 12(5), 056501 (2019).
https://dx.doi.org/10.7567/1882-0786/ab1713
Kumar, M., Rajpalke, M. K., Roul, B., Bhat, T. N. and Krupanidhi, S. B., Study of InN nanorods growth mechanism using ultrathin Au layer by plasma-assisted MBE on Si (III), Appl. Nanosci., 4(1), 121–125 (2014).
https://dx.doi.org/10.1007/s13204-012-0176-7
Le, B. H., Zhao, S., Tran, N. H. and Mi, Z., Electrically injected near-infrared light emission from single InN nanowire p-i-n diode, Appl. Phys. Lett., 105(23), 231124 (2014).
https://dx.doi.org/10.1063/1.4904271
Lei, M., Huang, K., Zhang, R., Yang, H. J., Fu, X. L., Wang, Y. G. and Tang, W. H., Catalyst-free chemical vapor deposition route to InN nanowires and their cathodoluminescence properties, J. Alloys Compd., 535, 50–52 (2012).
https://dx.doi.org/10.1016/j.jallcom.2012.04.071
Li, D., Sun, X., Song, H., Li, Z., Chen, Y., Jiang, H. and Miao, G., Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement, Adv. Mater., 24(6), 845–849 (2012).
https://dx.doi.org/10.1002/adma.201102585
Li, H., Zhao, G., Wang, L., Chen, Z. and Yang, S., Morphology controlled fabrication of InN Nanowires on Brass Substrates, Nanomater., 6(11), 195 (2016).
https://dx.doi.org/10.3390/nano6110195
Li, Y., Xiang, J., Qian, F., Gradečak, S., Wu, Y., Yan, H., Blom, D. A. and Lieber, C. M., Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors, Nano Lett., 6(7), 1468–1473 (2006).
https://dx.doi.org/10.1021/nl060849z
Matsuoka, T., Okamoto, H., Nakao, M., Harima, H. and Kurimoto, E., Optical bandgap energy of wurtzite InN, Appl. Phys. Lett., 81(7), 1246–1248 (2002).
https://dx.doi.org/10.1063/1.1499753
O’Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V. and Eastman, L. F., Electron transport in wurtzite indium nitride, J. Appl. Phys., 83(2), 826–829 (1998).
https://dx.doi.org/10.1063/1.366641
Pust, P., Schmidt, P. J. and Schnick, W., A revolution in lighting, Nat. Mater., 14(5), 454–458 (2015).
https://dx.doi.org/10.1038/nmat4270
Qian, Z. G., Shen, W. Z., Ogawa, H. and Guo, Q. X., Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters, J. Appl. Phys., 92(7), 3683–3687 (2002).
https://dx.doi.org/10.1063/1.1506199
Richter, T., Lüth, H., Schäpers, T., Meijers, R., Jeganathan, K., Estévez Hernández, S., Calarco, R. and Marso, M., Electrical transport properties of single undoped and n-type doped InN nanowires, Nanotechnology, 20(40), 405206 (2009).
https://dx.doi.org/10.1088/0957-4484/20/40/405206
Sakalauskas, E., Behmenburg, H., Hums, C., Schley, P., Rossbach, G., Giesen, C., Heuken, M., Kalisch, H., Jansen, R. H., Bläsing, J., Dadgar, A., Krost, A.and Goldhahn, R., Dielectric function and optical properties of Al-rich AlInN alloys pseudomorphically grown on GaN, J. Phys. D. Appl. Phys., 43(36), 365102 (2010).
https://dx.doi.org/10.1088/0022-3727/43/36/365102
Schley, P., Goldhahn, R., Winzer, A. T., Gobsch, G., Cimalla, V., Ambacher, O., Lu, H., Schaff, W. J., Kurouchi, M., Nanishi, Y., Rakel, M., Cobet, C. and Esser, N., Dielectric function and Van Hove singularities for In-rich InxGa1-xN alloys: Comparison of N- and metal-face materials, Phys. Rev., B 75(20), 205204 (2007).
https://dx.doi.org/10.1103/PhysRevB.75.205204
Song, W., Si, J., Wu, S., Hu, Z., Long, L., Li, T., Gao, X., Zhang, L., Zhu, W. and Wang, L., Synthesis and morphology evolution of indium nitride (InN) nanotubes and nanobelts by chemical vapor deposition, Cryst. Eng. Comm., 21(35), 5356–5362 (2019).
https://dx.doi.org/10.1039/C9CE00975B
Taniyasu, Y., Kasu, M. and Makimoto, T., An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature, 441(7091), 325–328 (2006).
https://dx.doi.org/10.1038/nature04760
Tansley, T. L. and Foley, C. P., Optical band gap of indium nitride, J. Appl. Phys., 59(9), 3241–3244 (1986).
https://dx.doi.org/10.1063/1.336906
Teker, K., Ali, Y. A. and Otto, J., Indium Nitride Nanowire Growth by Chemical Vapor Deposition and Electrical Characterization, Informatics, Electronics and Microsystems: Tech Connect Briefs., 198–201(2017)
Wang, C.-H., Lai, K.-Y., Li, Y.-C., Chen, Y.-C. and Liu, C.-P., Ultrasensitive Thin-Film-Based Al x Ga 1− x N Piezotronic Strain Sensors via Alloying-Enhanced Piezoelectric Potential, Adv. Mater., 27(40), 6289–6295 (2015).
https://dx.doi.org/10.1002/adma.201502314
Winden, A., Mikulics, M., Stoica, T., von der Ahe, M., Mussler, G., Haab, A., Grützmacher, D. and Hardtdegen, H., Site-controlled growth of indium nitride based nanostructures using metalorganic vapour phase epitaxy, J. Cryst. Growth., 370, 336–341 (2013).
https://dx.doi.org/10.1016/j.jcrysgro.2012.08.034
Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H. and Schaff, W. J., Effects of the narrow band gap on the properties of InN, Phys. Rev. B., 66(20), 201403 (2002).
https://dx.doi.org/10.1103/PhysRevB.66.201403
Xu, G., Li, Z., Baca, J. and Wu, J., Probing Nucleation Mechanism of Self-Catalyzed InN Nanostructures, Nanoscale Res. Lett., 5(1), 7–13 (2010).
https://dx.doi.org/10.1007/s11671-009-9434-3
Yu, R., Wang, X., Peng, W., Wu, W., Ding, Y., Li, S. and Wang, Z. L., Piezotronic Effect in Strain-Gated Transistor of a -Axis GaN Nanobelt, ACS Nano, 9(10), 9822–9829 (2015).
https://dx.doi.org/10.1021/acsnano.5b02817
Yu, R., Wu, W., Ding, Y. and Wang, Z. L., GaN Nanobelt-Based Strain-Gated Piezotronic Logic Devices and Computation, ACS Nano, 7(7), 6403–6409 (2013).
https://dx.doi.org/10.1021/nn4026788
Zhang, J., Zhang, L., Peng, X. and Wang, X., Vapor–solid growth route to single-crystalline indium nitride nanowires, J. Mater. Chem., 12(4), 802–804 (2002).
https://dx.doi.org/10.1039/b111270h
Zhao, S., Le, B. H., Liu, D. P., Liu, X. D., Kibria, M. G., Szkopek, T., Guo, H. and Mi, Z., p-Type InN Nanowires, Nano Lett., 13(11), 5509–5513 (2013).
https://dx.doi.org/10.1021/nl4030819
Zhao, Y., Tanaka, S., Yan, Q., Huang, C.-Y., Chung, R. B., Pan, C.-C., Fujito, K., Feezell, D., Van de Walle, C. G., Speck, J. S., DenBaars, S. P. and Nakamura, S., High optical polarization ratio from semipolar (2021) blue-green InGaN/GaN light-emitting diodes, Appl. Phys. Lett., 99(5), 051109 (2011).