Creation of Ultra-long Pure Magnetization Needle by Circularly Polarized Beam with a Ternary Optical Element
J. Environ. Nanotechnol., Volume 8, No 3 (2019) pp. 34-40
Abstract
The light-induced magnetization needle was made by tightly focusing a circularly polarized beam and modulating it using a self-designed ternary hybrid (phase/amplitude) filter (THF), based on Vector diffraction theory and the Inverse Faraday effect. The adaptable particle swarm optimization (PSO) searching technique prudently optimized the phase and amplitude patterns of THF. It was noted that optimizing produced an ultra-long pure magnetization needle with a lateral sub-wavelength scale and a super-long spherical magnetization chain with three-dimensional super-resolution. The present research on super-resolution magnetization patterns is very valuable in high density all-optical magnetic recording, atomic trapping and confocal and magnetic resonance imaging.
Full Text
Reference
El Hadri, M. S., Michel Hehn, Philipp Pirro, Charles-Henri Lambert, Grégory Malinowski, Eric E. Fullerton and Stéphane Mangin, Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films, Phys. Rev. B., 94(6), 064419 (2016b).
https://dx.doi.org/10.1103/PhysRevB.94.064419
El Hadri, M. S., Pirro, P., Lambert, C.-H., Bergeard, N., Petit-Watelot, S., Hehn, M., Malinowski, G., Montaigne, F., Quessab, Y., Medapalli, R., Fullerton, E. E. and Mangin, S., Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses, Appl. Phys. Lett., 108, 092405-5 (2016a).
https://dx.doi.org/10.1063/1.4943107
Gong, L., Wang, L., Zhu, Z., Wang, X., Zhao, H. and Gu, B., Generation and manipulation of super-resolution spherical magnetization chains, Appl. Opt., 55(21), 5783–5789 (2016).
https://dx.doi.org/10.1364/AO.55.005783
Grinolds, M. S., Warner, M., De Greve, K., Dovzhenko, Y., Thiel, L., Walsworth, R. L., Hong, S., Maletinsky, P. and Yacoby, A., Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins, Nat Nanotechnol., 9(4), 279-284 (2014).
https://dx.doi.org/10.1038/nnano.2014.30.
Gu, M., Xiangping Li and Yaoyu Cao, Optical storage arrays: a perspective for future big data storage, Light: Sci. Appl., 3, e177 (2014).
https://dx.doi.org/10.1038/lsa.2014.58
Hadri, M. S., Hehn Michel, Malinowski Gregory, Mangin Stephane, Materials and devices for all-optical helicity-dependent switching, J. Phys. D: Appl. Phys., 50(13), 133002 (2017).
https://dx.doi.org/10.1088/1361-6463/aa5adf
Hertel, R., Theory of the inverse Faraday Effect in metals, J. Magn. Magn. Mater., 303(1), L1–L4 (2006).
https://dx.doi.org/10.1016/j.jmmm.2005.10.225
Ioan Cristian Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. Process. Lett., 85(6), 317-325 (2003).
https://dx.doi.org/10.1016/S0020-0190(02)00447-7
Jiang, Y., Li, X. and Gu, M., Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam, Opt. Lett., 38(16), 2957–2960 (2013).
https://dx.doi.org/10.1364/OL.38.002957
Jian-Nong, C., Qin-Feng, X. and Gang, W., Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam, Chin. Phys., B20, 114211 (2011).
https://dx.doi.org/10.1088/1674-1056/20/11/114211
Jie Lin, Hong-yang Zhao, Yuan Ma, Jiubin Tan and Peng Jin, New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter, Opt. Express, 24(10), 10748-10758 (2016).
https://dx.doi.org/10.1364/OE.24.010748
Khorsand, A. R., Savoini, M., Kirilyuk, A., Kimel, A. V., Tsukamoto, A., Itoh, A. and Rasing, Th., Role of magnetic circular dichroism in all-optical magnetic recording, Phys. Rev. Lett., 108(12), 127205 (2012).
https://dx.doi.org/10.1103/PhysRevLett.108.127205
Ma, W., Zhang, D., Zhu, L. and Chen, J., Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase-modulated beam, Chin. Opt. Lett., 13(5), 52101–52105 (2015).
Mangin, S., Gottwald, M., Lambert, C., Steil, D., Uhlř, V., Pang, L., Hehn, M., Alebrand, S., Cinchetti, M., Malinowski, G., Fainman, Y., Aeschlimann, M. and Fullerton, E. E., Engineered materials for all-optical helicity-dependent magnetic switching, Nat. Mater., 13, 286–292 (2014).
https://dx.doi.org/10.1038/nmat3864
Mohamed Ahmed Mohandes, Modeling global solar radiation using partiticle swarm optimization (PSO), Solar Energy, 86(11), 3137-3145 (2012).
https://dx.doi.org/10.1016/j.solener.2012.08.005
Nie, Z., Ding, W., Shi, G., Li, D., Zhang, X., Wang, Y. and Song, Y., Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain, Opt. Express, 23(16), 21296–21305 (2015).
https://dx.doi.org/10.1364/OE.23.021296
Pierre Vallobra, Thibaud Fache, Yong Xu, Lei Zhang, Gregory Malinowski, Michel Hehn, Juan-Carlos Rojas-Sánchez Eric.E. Fullerton and Stephane Mangin, Manipulating exchange bias using all-optical helicity-dependent switching, Phys. Rev. B., 96, 144403 (2017).
Qin, F., Huang, K., Wu, J., Jiao, J., Luo, X., Qiu, C. and Hong, M., Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light, Sci. Rep., 5, 9977 (2015).
https://dx.doi.org/10.1038/srep09977.
Quessab, Y., Medapalli, R., El Hadri, M. S., Hehn, M., Malinowski, G., Fullerton, E. E. and Mangin, S., Helicity-dependent all-optical domain wall motion in ferromagnetic thin films, Phys. Rev. B., 97(5), 054419 (2018).
https://dx.doi.org/10.1103/PhysRevB.97.054419
Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system, Proc. Roy. Soc. A., 253, 358–379 (1959).
https://dx.doi.org/10.1098/rspa.1959.0200
Savoini, M., Medapalli, R., Koene, B., Khorsand, A. A., Le Guyader, L., Duo, L., Finazzi, M., Tsukamoto, A., Itoh, A., Nolting, F., Kirilyuk, A., Kimel, A. V. and Rasig, Th., Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light, Phys. Rev. B., 86, 140404(R) (2012).
https://dx.doi.org/10.1103/PhysRevB.86.140404
Schneeweiss, P., Le Kien, F. and Rauschenbeutel, A., Nanofiber-based atom trap created by Combining fictitious and real magnetic fields, New J. Phys., 16, 013014 (2014).
https://dx.doi.org/10.1088/1367-2630/16/1/013014
Sicong Wang, Chen Wei, Yuanhua Feng, Yaoyu Cao, Haiwei Wang, Weiming Cheng, Changsheng Xie, Arata Tsukamoto, Andrei Kirilyuk, Theo Rasing, Alexey V. Kimel and Xiangping Li, All-optical helicity-dependent magnetic switching by first-order azimuthally polarized vortex beams, Appl. Phys. Lett., 113, 171108 (2018).
https://dx.doi.org/10.1063/1.5051576
Stanciu, C. D., Hansteen, F., Kimel, A. V. and Kirilyuk Tsukamoto, A., All-optical magnetic recording with circularly polarized light, Phys. Rev. Lett., 99(4), 047601-047606 (2007).
https://dx.doi.org/10.1103/PhysRevLett.99.047601
Udhayakumar, M., Prabakaran, K. and Rajesh, K. B., Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut gaussian beam, Opt. Laser Technol., 102, 40-46 (2018b).
https://dx.doi.org/10.1016/j.optlastec.2017.12.008
Udhayakumar, M., Prabakaran, K., Rajesh, K. B., Jaroszewicz, Z. and Belafhal, A., Generating Sub wavelength pure longitudinal magnetization probe and chain using complex phase plate, Opt. Commun., 407, 275–279,(2018a).
https://dx.doi.org/10.1016/j.optcom.2017.09.007
Van der Ziel, J. P., Peter S. Pershan and Malmstrom, L. D., Optically-induced magnetization resulting from the inverse Faraday effect, Phys. Rev. Lett., 15(5), 190–193 (1965).
https://dx.doi.org/10.1103/PhysRevLett.15.190
Vetsch, V., Reitz, D., Sague, G., Schmidt, R., Dawkin, S. T. and Rauschenbeutel, A., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, Phys. Rev. Lett., 104(20), 203603 (2010).
https://dx.doi.org/10.1103/PhysRevLett.104.203603
Volkov, P. V. and Novikov, M. A., Inverse Faraday Effect in anisotropic media, Crystallography Rep., 47(5), 824–828 (2002).
https://dx.doi.org/10.1134/1.1509399
Wang, S., Li, X., Zhou, J. and Gu, M., Ultra long pure longitudinal magnetization needle induced by annular vortex binary optics, Opt. Lett., 39(17), 5022–5025 (2014).
https://dx.doi.org/10.1364/OL.39.005022
Xiaoyu Weng, Xiumin Gao, Hanming Guo and Songlin Zhuang, Creation of tunable multiple 3D dark spots with cylindrical vector beam, Appl. Opt., 53(11), 2470-2476 (2014).
https://dx.doi.org/10.1364/AO.53.002470
Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam, Appl. Opt., 56(7), 1940–1946 (2017).
https://dx.doi.org/10.1364/AO.56.001940
Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Generation of an ultra-long pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter, J. Opt., 19(8), 085401 (2017a).
https://dx.doi.org/10.1088/2040-8986/aa73ce
Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Theoretical guideline for generation of an ultra-long magnetization needle and a super-long conveyed spherical magnetization chain, Opt. Express, 25(19), 22268-22279(2017b).
https://dx.doi.org/10.1364/OE.25.022268
Zijlstra, P., Chon, J. W. and Gu, M., Five-dimensional optical recording mediated by surface Plasmon’s in gold Nano rods, Nature, 459(7245), 410-413(2009).