Open Access

Creation of Ultra-long Pure Magnetization Needle by Circularly Polarized Beam with a Ternary Optical Element

M. Udhayakumar, Department of Physics, Chikkanna Government Arts College, Trippur, TN, India. Haresh M. Pandya, Department of Physics, Chikkanna Government Arts College, Trippur, TN, India. K. B. Rajesh
Department of Physics, Chikkanna Government Arts College, Trippur, TN, India.


J. Environ. Nanotechnol., Volume 8, No 3 (2019) pp. 34-40

https://doi.org/10.13074/jent.2019.09.193370

PDF


Abstract

The light-induced magnetization needle was made by tightly focusing a circularly polarized beam and modulating it using a self-designed ternary hybrid (phase/amplitude) filter (THF), based on Vector diffraction theory and the Inverse Faraday effect. The adaptable particle swarm optimization (PSO) searching technique prudently optimized the phase and amplitude patterns of THF. It was noted that optimizing produced an ultra-long pure magnetization needle with a lateral sub-wavelength scale and a super-long spherical magnetization chain with three-dimensional super-resolution. The present research on super-resolution magnetization patterns is very valuable in high density all-optical magnetic recording, atomic trapping and confocal and magnetic resonance imaging.

Full Text

Reference


El Hadri, M. S., Michel Hehn, Philipp Pirro, Charles-Henri Lambert, Grégory Malinowski, Eric E. Fullerton and Stéphane Mangin, Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films, Phys. Rev. B., 94(6), 064419 (2016b).

https://dx.doi.org/10.1103/PhysRevB.94.064419

El Hadri, M. S., Pirro, P., Lambert, C.-H., Bergeard, N., Petit-Watelot, S., Hehn, M., Malinowski, G., Montaigne, F., Quessab, Y., Medapalli, R., Fullerton, E. E. and Mangin, S., Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses, Appl. Phys. Lett., 108, 092405-5 (2016a).

https://dx.doi.org/10.1063/1.4943107

Gong, L., Wang, L., Zhu, Z., Wang, X., Zhao, H. and Gu, B., Generation and manipulation of super-resolution spherical magnetization chains, Appl. Opt., 55(21), 5783–5789 (2016).

https://dx.doi.org/10.1364/AO.55.005783

Grinolds, M. S., Warner, M., De Greve, K., Dovzhenko, Y., Thiel, L., Walsworth, R. L., Hong, S., Maletinsky, P. and Yacoby, A., Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins, Nat Nanotechnol., 9(4), 279-284 (2014).

https://dx.doi.org/10.1038/nnano.2014.30.

Gu, M., Xiangping Li and Yaoyu Cao, Optical storage arrays: a perspective for future big data storage, Light: Sci. Appl., 3, e177 (2014).

https://dx.doi.org/10.1038/lsa.2014.58

Hadri, M. S., Hehn Michel, Malinowski Gregory, Mangin Stephane, Materials and devices for all-optical helicity-dependent switching, J. Phys. D: Appl. Phys., 50(13), 133002 (2017).

https://dx.doi.org/10.1088/1361-6463/aa5adf

Hertel, R., Theory of the inverse Faraday Effect in metals, J. Magn. Magn. Mater., 303(1), L1–L4 (2006).

https://dx.doi.org/10.1016/j.jmmm.2005.10.225

Ioan Cristian Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. Process. Lett., 85(6), 317-325 (2003).

https://dx.doi.org/10.1016/S0020-0190(02)00447-7

Jiang, Y., Li, X. and Gu, M., Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam, Opt. Lett., 38(16), 2957–2960 (2013).

https://dx.doi.org/10.1364/OL.38.002957

Jian-Nong, C., Qin-Feng, X. and Gang, W., Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam, Chin. Phys., B20, 114211 (2011).

https://dx.doi.org/10.1088/1674-1056/20/11/114211

Jie Lin, Hong-yang Zhao, Yuan Ma, Jiubin Tan and Peng Jin, New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter, Opt. Express, 24(10), 10748-10758 (2016).

https://dx.doi.org/10.1364/OE.24.010748

Khorsand, A. R., Savoini, M., Kirilyuk, A., Kimel, A. V., Tsukamoto, A., Itoh, A. and Rasing, Th., Role of magnetic circular dichroism in all-optical magnetic recording, Phys. Rev. Lett., 108(12), 127205 (2012).

https://dx.doi.org/10.1103/PhysRevLett.108.127205

Ma, W., Zhang, D., Zhu, L. and Chen, J., Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase-modulated beam, Chin. Opt. Lett., 13(5), 52101–52105 (2015).

Mangin, S., Gottwald, M., Lambert, C., Steil, D., Uhlř, V., Pang, L., Hehn, M., Alebrand, S., Cinchetti, M., Malinowski, G., Fainman, Y., Aeschlimann, M. and Fullerton, E. E., Engineered materials for all-optical helicity-dependent magnetic switching, Nat. Mater., 13, 286–292 (2014).

https://dx.doi.org/10.1038/nmat3864

Mohamed Ahmed Mohandes, Modeling global solar radiation using partiticle swarm optimization (PSO), Solar Energy, 86(11), 3137-3145 (2012).

https://dx.doi.org/10.1016/j.solener.2012.08.005

Nie, Z., Ding, W., Shi, G., Li, D., Zhang, X., Wang, Y. and Song, Y., Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain, Opt. Express, 23(16), 21296–21305 (2015).

https://dx.doi.org/10.1364/OE.23.021296

Pierre Vallobra, Thibaud Fache, Yong Xu, Lei Zhang, Gregory Malinowski, Michel Hehn, Juan-Carlos Rojas-Sánchez Eric.E. Fullerton and Stephane Mangin, Manipulating exchange bias using all-optical helicity-dependent switching, Phys. Rev. B., 96, 144403 (2017).

Qin, F., Huang, K., Wu, J., Jiao, J., Luo, X., Qiu, C. and Hong, M., Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light, Sci. Rep., 5, 9977 (2015).

https://dx.doi.org/10.1038/srep09977.

Quessab, Y., Medapalli, R., El Hadri, M. S., Hehn, M., Malinowski, G., Fullerton, E. E. and Mangin, S., Helicity-dependent all-optical domain wall motion in ferromagnetic thin films, Phys. Rev. B., 97(5), 054419 (2018).

https://dx.doi.org/10.1103/PhysRevB.97.054419

Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system, Proc. Roy. Soc. A., 253, 358–379 (1959).

https://dx.doi.org/10.1098/rspa.1959.0200

Savoini, M., Medapalli, R., Koene, B., Khorsand, A. A., Le Guyader, L., Duo, L., Finazzi, M., Tsukamoto, A., Itoh, A., Nolting, F., Kirilyuk, A., Kimel, A. V. and Rasig, Th., Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light, Phys. Rev. B., 86, 140404(R) (2012).

https://dx.doi.org/10.1103/PhysRevB.86.140404

Schneeweiss, P., Le Kien, F. and Rauschenbeutel, A., Nanofiber-based atom trap created by Combining fictitious and real magnetic fields, New J. Phys., 16, 013014 (2014).

https://dx.doi.org/10.1088/1367-2630/16/1/013014

Sicong Wang, Chen Wei, Yuanhua Feng, Yaoyu Cao, Haiwei Wang, Weiming Cheng, Changsheng Xie, Arata Tsukamoto, Andrei Kirilyuk, Theo Rasing, Alexey V. Kimel and Xiangping Li, All-optical helicity-dependent magnetic switching by first-order azimuthally polarized vortex beams, Appl. Phys. Lett., 113, 171108 (2018).

https://dx.doi.org/10.1063/1.5051576

Stanciu, C. D., Hansteen, F., Kimel, A. V. and Kirilyuk Tsukamoto, A., All-optical magnetic recording with circularly polarized light, Phys. Rev. Lett., 99(4), 047601-047606 (2007).

https://dx.doi.org/10.1103/PhysRevLett.99.047601

Udhayakumar, M., Prabakaran, K. and Rajesh, K. B., Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut gaussian beam, Opt. Laser Technol., 102, 40-46 (2018b).

https://dx.doi.org/10.1016/j.optlastec.2017.12.008

Udhayakumar, M., Prabakaran, K., Rajesh, K. B., Jaroszewicz, Z. and Belafhal, A., Generating Sub wavelength pure longitudinal magnetization probe and chain using complex phase plate, Opt. Commun., 407, 275–279,(2018a).

https://dx.doi.org/10.1016/j.optcom.2017.09.007

Van der Ziel, J. P., Peter S. Pershan and Malmstrom, L. D., Optically-induced magnetization resulting from the inverse Faraday effect, Phys. Rev. Lett., 15(5), 190–193 (1965).

https://dx.doi.org/10.1103/PhysRevLett.15.190

Vetsch, V., Reitz, D., Sague, G., Schmidt, R., Dawkin, S. T. and Rauschenbeutel, A., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, Phys. Rev. Lett., 104(20), 203603 (2010).

https://dx.doi.org/10.1103/PhysRevLett.104.203603

Volkov, P. V. and Novikov, M. A., Inverse Faraday Effect in anisotropic media, Crystallography Rep., 47(5), 824–828 (2002).

https://dx.doi.org/10.1134/1.1509399

Wang, S., Li, X., Zhou, J. and Gu, M., Ultra long pure longitudinal magnetization needle induced by annular vortex binary optics, Opt. Lett., 39(17), 5022–5025 (2014).

https://dx.doi.org/10.1364/OL.39.005022

Xiaoyu Weng, Xiumin Gao, Hanming Guo and Songlin Zhuang, Creation of tunable multiple 3D dark spots with cylindrical vector beam, Appl. Opt., 53(11), 2470-2476 (2014).

https://dx.doi.org/10.1364/AO.53.002470

Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam, Appl. Opt., 56(7), 1940–1946 (2017).

https://dx.doi.org/10.1364/AO.56.001940

Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Generation of an ultra-long pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter, J. Opt., 19(8), 085401 (2017a).

https://dx.doi.org/10.1088/2040-8986/aa73ce

Yan, W., Nie, Z., Zhang, X., Wang, Y. and Song, Y., Theoretical guideline for generation of an ultra-long magnetization needle and a super-long conveyed spherical magnetization chain, Opt. Express, 25(19), 22268-22279(2017b).

https://dx.doi.org/10.1364/OE.25.022268

Zijlstra, P., Chon, J. W. and Gu, M., Five-dimensional optical recording mediated by surface Plasmon’s in gold Nano rods, Nature, 459(7245), 410-413(2009).

https://dx.doi.org/10.1038/nature08053

Contact Us

Powered by

Powered by OJS