Open Access

Effect of Complex Phase Plate on Tight Focusing of Azimuthally Polarized Dark and Anti-dark Gaussian Beam

J. William Charles, Department of Physics, Chikkanna Government Arts College, Trippur, TN, India. U. Udhayakumar,
Department of Physics, Chikkanna Government Arts College, Trippur, TN, India.
K. B. Rajesh, Department of Physics, Chikkanna Government Arts College, Trippur, TN, India. A. Mohamed Musthafa Department of General Studies (Physics Group), Jubail University College (Male Branch), Royal Commission of Jubail, Kingdom of Saudi Arabia.


J. Environ. Nanotechnol., Volume 8, No 3 (2019) pp. 01-06

https://doi.org/10.13074/jent.2019.09.193372

PDF


Abstract

This study was focused on azimuthally polarized Dark and Anti-dark Gaussian (DADG) beams passing through a high numerical aperture lens (NA). The Vector Diffraction theory was used to study the lens theoretically. It was reported that with appropriate phase modulation of the input DADG beam, the intensity distribution of the focused region can be modified to be a focal hole segment with numerous focal holes separated by varied axial distances. A chain of focal hole segments like this can be used for multiple trapping of low refractive index particles as well as an erase beam for STED microscopy with a high screening rate.

Full Text

Reference


Cai, Y. and Ge, D., Propagation of various dark hollow beams through an aperture paraxial ABCD optical system, Phys. Lett. A., 357(1), 72–80 (2006).

https://dx.doi.org/10.1016/j.physleta.2006.04.022

Cai, Y., Lu, X. and Lin, Q., Hollow Gaussian beam and its propagation properties, Opt. Lett., 28(13), 1084–1086 (2003).

https://dx.doi.org/10.1364/OL.28.001084

Cao, J., Chen, Q. and Guo, H., Creation of a controllable three dimensional optical chain by TEM01mode radially polarized Laguerre–Gaussian beam, Optik., 124(15), 2033–2036 (2013).

https://dx.doi.org/10.1016/j.ijleo.2012.06.057

Cizmar, T., Romero, L. C. D., Dholakia, K. and Andrews, D. L., Multiple optical trapping and binding: new routes to self-assembly, J. Phys. B: Atomic, Molecular and Optical Physics, 43(10), 102001 (2010).

https://dx.doi.org/10.1088/0953-4075/43/10/102001

Dehez, H., April, A. and Piché, M., Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent, Opt. Express, 20(14) , 14891–14905 (2012).

https://dx.doi.org/10.1364/OE.20.014891

Faroq, S. and Belafhal, A., Conical difraction of dark and antidark beams modulated by a Gaussian profle in biaxial crystals, Optik., 154, 344–353 (2018).

https://dx.doi.org/10.1016/j.ijleo.2017.10.049

Friedman, N., Kaplan, A. and Davidson, N., Dark optical traps for cold atoms, Adv. At. Mol. Opt. Phys.48, 99–151 (2002).

https://dx.doi.org/10.1016/S1049-250X(02)80007-6

Grimm, R., Weidemuller, M. and Ovchinnikov, Y. B., Optical dipole traps for neutral atoms, Adv. Atom. Mol. Opt. Phys.,42, 95–170 (2000).

https://dx.doi.org/10.1016/S1049-250X(08)60186-X

Hyde, M. W. and Avramov-Zumarovic, S., Generating dark and antidark beams using the genuine cross spectral density function criterion, J. Opt. Soc. Am. A., 36(6), 1058–1063 (2019).

https://dx.doi.org/10.1364/JOSAA.36.001058

Ito, H., Nakata, T., Sakaki, K., Ohtsu, M., Lee, K. I. and Jhe, W., Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers, Phys. Rev. Lett., 76, 4500–4503 (1996).

https://dx.doi.org/10.1103/PhysRevLett.76.4500

Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y. and Sasada, H., Novel optical trap of atoms with a doughnut beam, Phys. Rev. Lett., 78, 4713–4716 (1997).

https://dx.doi.org/10.1103/PhysRevLett.78.4713

Lalithambigai, K., Saraswathi, R. C., Anbarasan, P. M., Rajesh, K. B. and Jaroszewicz, Z., Generation of multiple focal hole segments using double-ring shaped azimuthally polarized beam, J. Atomic Mol. Phy., 01–04 (2013).

https://dx.doi.org/10.1155/2013/451715

Lalithambigai, K., Suresh, P., Ravi, V., Prabakaran, K., Jaroszewicz, Z., Rajesh, K. B., Anbarasan, P. M. and Pillai, T. V., Generation of sub wavelength super-long dark channel using high NA lens axicon, Opt. Lett., 37(6), 999–1001 (2012).

https://dx.doi.org/10.1364/OL.37.000999.

Lin, J., Yin, K., Li, Y. and Tan, J. B., Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation, Opt. Lett., 36(7), 1185–1187 (2011).

https://dx.doi.org/10.1364/OL.36.001185

Mei, Z. and Zhao, D., Controllable elliptical dark-hollow beams, J. Opt. Soc. Am. A., 23, 919–925 (2006a).

https://dx.doi.org/10.1364/JOSAA.22.001898

Mei, Z. and Zhao, D., Generalized M2 factor of hard-edged difracted controllable dark-hollow beams, Opt. Commun., 263(2), 261–266 (2006b).

https://dx.doi.org/10.1016/j.optcom.2006.01.039

Mei, Z. and Zhao, D., Non-paraxial propagation of controllable dark-hollow beams, J. Opt. Soc. Am. A., 25(3), 537–542 (2008).

https://dx.doi.org/10.1364/JOSAA.25.000537

Ponomarenko, S. A., Huang, W. and Cada, M., Dark and antidark diffraction-free beams, Opt. Lett., 32(17), 2508–2510 (2007).

https://dx.doi.org/10.1364/OL.32.002508

Prabakaran, K., Rajesh, K. B., Pillai, T. V. S., Chandrasekaran, R. and Jaroszewicz, Z., Generation of multiple focal spot and focal hole of sub wavelength scale using phase modulated LG (1,1) beam, Optik, 124(21), 5086–5088 (2014).

https://dx.doi.org/10.1016/j.ijleo.2013.03.068

Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A Math. Phys. Sci., 253, 358–379 (1959).

https://dx.doi.org/10.1098/rspa.1959.0200

Tian, B. and Pu, J., Tight focusing of a double-ring-shaped, azimuthally polarized beam, Opt. Lett., 36(11), 2014–2016 (2011).

https://dx.doi.org/10.1364/OL.36.002014

Wang, Z., Lin, Q. and Wang, Y.: Control of atomic rotation by elliptical hollow beam carrying zero angular momentum, Opt. Commun., 240(4), 357–362 (2004).

https://dx.doi.org/10.1016/j.optcom.2004.06.044

Watanabe, T., Iketaki, Y., Omatsu, T., Yamamoto, K., Sakai, M. and Fuji, M., Two point separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Opt. Express, 11(24), 3271–3276 (2003).

https://dx.doi.org/10.1364/OE.11.003271

Xu, Y., Singh, J., Sheppard, C. J. R. and Chen, N., Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter, Opt. Express, 15(10), 6409–6413 (2007).

https://dx.doi.org/10.1364/OE.15.006409

Yaalou, M., El Halba, E. M., Hricha, Z. and Belafhal, A., Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere, Opt. Quantum Electron., (2019).

https://dx.doi.org/10.1007/s11082-019-1972-z

Yaalou, M., El Halba, E. M., Hricha, Z. and Belafhal, A., Transformation of double-half inverse Gaussian hollow beams into superposition of finite airy beams using an optical airy transform, Opt. Quantum Electron., 51, 64–75 (2019).

https://dx.doi.org/10.1007/s11082-019-1775-2

Yiqiong Zhao, Qiwen Zhan, Yanli Zhang, Yong-Ping Li, Creation of a threedimensional optical chain for controllable particle delivery, Opt. Lett., 30(8), 848–850 (2005).

https://dx.doi.org/10.1364/OL.30.000848

Zha, Y., Wei, J., Wang, H, and Gan, F., Creation of an ultra-long depth of focus super resolution longitudinally polarized beam with a ternary optical element, J. Opt. 15(7), 075703 (2013).

https://dx.doi.org/10.1088/2040-8978/15/7/075703

Zhu, X., Wang, F., Zhao, C., Cai, Y. and Ponomarenko, S. A., Experimental realization of dark and anti dark difraction-free beams, Opt. Lett., 44, 2260–2263 (2019).

https://dx.doi.org/10.1364/OL.44.002260

Contact Us

Powered by

Powered by OJS