Electrochemical Study of Inhibition of Corrosion of Copper by Ofloxacin in Acid Media
J. Environ. Nanotechnol., Volume 8, No 1 (2019) pp. 75-88
Abstract
The inhibition efficiency of ofloxacin, a fluoroquinolone, on the corrosion of copper in acids has been studied employing polarisation, EIS and weight loss measurements. Ofloxacin had a high inhibition effectiveness, and the inhibitory activity was mixed in nature but mainly cathodic in character. The method of inhibitor adsorption onto the metal surface was identified by determining the potential of zero charges. The activation energy (Ea) and thermodynamic parameters such as the adsorption equilibrium constant (Kads) and the free energy of adsorption (ΔGads) were estimated using the temperature dependence of corrosion rates. The fact that the free energy of adsorption is near to -40 kJmol-1 showed that adsorption occurred via electrostatic coulombic attraction and chemisorption and that the Langmuir adsorption isotherm was followed. Among the potassium halides, only KI improved the inhibition efficiency of ofloxacin by synergism. The structural features obtained by quantum chemical calculations were also supportive of the experimental results.
Full Text
Reference
Ai, J., Guo, X., Qu, J., Chen, Z. and Zheng, J., Adsorption behavior and synergistic mechanism of a cationic inhibitor and KI on the galvanic electrode, Colloid. Surf. A: Physico.Chem. Eng. Aspect., 281(1), 147-155(2006).
https://doi.org/10.1016/j.colsurfa.2006.02.031
Aramaki, K. and Hackerman, N., Inhibition mechanism of medium‐sized polyethyleneimine, J. Electrochem. Soc., 116 (5), 568-574(1969).
https://doi.org/10.1149/1.2411965
Barcia, O. and Mattos, O., Reaction model simulating the role of sulphate and chloride in anodic dissolution of iron, Electrochim. Acta., 35(10), 1601-1608(1990).
https://doi.org/10.1016/0013-4686(90)80016-H
Barcia, O., Mattos, O., Pebere, N. and Tribollet, B., Mass‐Transport Study for the Electrodissolution of Copper in 1M Hydrochloric Acid Solution by Impedance, J. Electrochem. Soc., 140(10), 2825-2832(1993).
https://doi.org/10.1149/1.2220917
Benabdellah, M., Touzani, R., Aouniti, A., Dafali, A., El Kadiri, S., Hammouti, B. and Benkaddour, M., Inhibitive action of some bipyrazolic compounds on the corrosion of steel in 1M HCl: Part I: Electrochemical study, Mater. Chem. Phys., 105(2), 373-379(2007).
https://doi.org/10.1016/j.matchemphys.2007.05.001
Bentiss, F., Bouanis, M., Mernari, B., Traisnel, M. and Lagrenee, M., Effect of iodide ions on corrosion inhibition of mild steel by 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole in sulfuric acid solution, J. Appl. Electrochem., 32(6), 671-678 (2002).
https://doi.org/10.1023/A:1020161332235
Bentiss, F., Traisnel, M., Gengembre, L. and Lagrenée, M., A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS, Appl. Surf. Sci., 152(3), 237-249(1999).
https://doi.org/10.1016/S0169-4332(99)00322-0
Bouklah, M., Harek, H., Touzani, R., Hammouti, B. and Harek, Y., DFT and quantum chemical investigation of molecular properties of substituted pyrrolidinones, Arab. J. Chem., 5(2), 163-166 (2012).
https://doi.org/10.1016/j.arabjc.2010.08.008
Döner, A., Solmaz, R., Özcan, M. and Kardaş, G., Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution, Corros. Sci., 53(9), 2902-2913(2011).
https://doi.org/10.1016/j.corsci.2011.05.027
Feng, Y., Siow, K., Teo, W. and Hsieh, A., The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution, Corros. Sci., 41(5), 829-852(1999).
https://doi.org/10.1016/S0010-938X(98)00144-9
Ferreira, E., Giacomelli, C., Giacomelli, F. and Spinelli, A., Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys., 83(1), 129-134(2004).
https://doi.org/10.1016/j.matchemphys.2003.09.020
Gao, J., Methods and applications of combined quantum mechanical and molecular mechanical potentials, Rev. Comput. Chem., 7, 119-186(1996).
https://doi.org/10.1002/9780470125847.ch3
Geerlings, P., De Proft, F. and Langenaeker, W., Conceptual density functional theory, Chem. Rev., 103(5), 1793-1874(2003).
https://doi.org/10.1021/cr990029p
Hosseini, M., Mertens, S. F., Ghorbani, M. and Arshadi, M. R., Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys., 78(3), 800-808(2003).
https://doi.org/10.1016/S0254-0584(02)00390-5
Hsu, C. and Mansfeld, F., Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion., 57(9), 747-748(2001).
https://doi.org/10.5006/1.3280607
Ivanov, E., Inhibitors for metal corrosion in acid media, Metallurgy, Moscow, (1986).
Joseph, B. and Joseph, A., Inhibition of Copper Corrosion in 1 M Nitric Acid-Electro Analytical and Theoretical Study with (E)-(4-(4-Methoxybenzylideneamino)-4H-1, 2, 4-Triazole-3, 5diyl) Dimethanol (MBATD), Port. Electrochim. Acta., 29(4), 253-271(2011).
https://doi.org/10.4152/pea.201104253
Khaled, K., Corrosion control of copper in nitric acid solutions using some amino acids–A combined experimental and theoretical study, Corros. Sci., 52(10), 3225-3234(2010).
https://doi.org/10.1016/j.corsci.2010.05.039
Li, W-h., He, Q., Zhang, S-t., Pei, C-l. and Hou, B-r., Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, J. Appl. Electrochem., 38(3), 289-295(2008).
https://doi.org/10.1007/s10800-007-9437-7
Li, X., Deng, S. and Fu, H., Synergism between red tetrazolium and uracil on the corrosion of cold-rolled steel in H2SO4 solution, Corros. Sci., 51(6), 1344-1355(2009).
https://doi.org/10.1016/j.corsci.2009.03.023
Ma, H., Chen, S., Niu, L., Zhao, S., Li, S. and Li, D., Inhibition of copper corrosion by several Schiff bases in aerated halide solutions, J. Appl. Electrochem., 32(1), 65-72(2002).
https://doi.org/10.1023/A:1014242112512
Ma, H., Chen, S., Yin, B., Zhao, S. and Liu, X., Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions, Corros. Sci., 5(5), 867-882(2003).
https://doi.org/10.1016/S0010-938X(02)00175-0
Obot, I., Obi-Egbedi, N. and Umoren, S., The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium, Corros. Sci., 51(2), 276-282(2009).
https://doi.org/10.1016/j.corsci.2008.11.013
Özcan, M., Solmaz, R., Kardaş, G. and Dehri, I., Adsorption properties of barbiturates as green corrosion inhibitors on mild steel in phosphoric acid, Colloid. Surf. A: Physico. Chem. Eng. Aspect., 325(1), 57-63(2008).
https://doi.org/10.1016/j.colsurfa.2008.04.031
Pavithra, M., Venkatesha, T., Vathsala, K. and Nayana, K., Synergistic effect of halide ions on improving corrosion inhibition behaviour of benzisothiozole-3-piperizine hydrochloride on mild steel in 0.5 MH2SO4 medium, Corros. Sci., 52 (11), 3811-3819(2010).
https://doi.org/10.1016/j.corsci.2010.07.034
Popova, A., Sokolova, E., Raicheva, S. and Christov, M., AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives, Corros. Sci., 45(1), 33-58(2003).
https://doi.org/10.1016/S0010-938X(02)00072-0
Quraishi, M., Rawat, J. and Ajmal, M., Dithiobiurets: a novel class of acid corrosion inhibitors for mild steel, J. Appl. Electrochem., 30(6), 745-751(2000).
https://doi.org/10.1023/A:1004099412974
Rahman, K., Schneider, S. C. and Seitz, M. A., Hopping and Ionic Conduction in Tin Oxide‐Based Thick‐Film Resistor Compositions, J. Am. Ceram. Soc., 80(5), 1198-1202(1997).
https://doi.org/10.1111/j.1151-2916.1997.tb02964.x
Şahin, M., Bilgic, S. and Yılmaz, H., The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums, Appl. Surf. Sci., 195(1), 01-07(2002).
https://doi.org/10.1016/S0169-4332(01)00783-8
Saiyan, V. R. and Adhikari, A. V., Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl) quinolin-4-yl] thio} propanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution, Corros. Sci., 50(1), 55-61(2008).
https://doi.org/10.1016/j.corsci.2006.06.035
Sanghvi, M., Shukla, S., Misra, A., Padh, M. and Mehta, G., Inhibition of hydrochloric acid corrosion of mild steel by aid extracts ofembilica officianalis, Terminalia bellirica and Terminalia chebula, Bull. Electrochem., 13(8-9), 358-361(1997).
Solmaz, R., Kardaş, G., Culha, M., Yazıcı, B. and Erbil, M., Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media, Electrochim. Acta., 53(20), 5941-5952(2008). https://doi.org/10.1016/j.electacta.2008.03.055
Sauer, T. and Brandt, A., Adsorption of oleates of various amines on iron in acidic solution, Electrochim. Acta., 26(9), 1253-1256(1981).
https://doi.org/10.1016/0013-4686(81)85107-9
Umoren, S, Li, Y & Wang, F.,Synergistic effect of iodide ion and polyacrylic acid on corrosion inhibition of iron in H2SO4 investigated by electrochemical techniques, Corros. Sci., 52(7), 2422-2429(2010).
https://doi.org/10.1016/j.corsci.2010.03.021
Umoren, S., Ogbobe, O., Igwe, I. and Ebenso, E., Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives, Corros. Sci., 50 (7), 1998-2006(2008).
https://doi.org/10.1016/j.corsci.2008.04.015
Yurt, A., Bereket, G., Kivrak, A., Balaban, A. and Erk, B., Effect of Schiff bases containing pyridyl group as corrosion inhibitors for low carbon steel in 0.1 M HCl, J. Appl. Electrochem., 35(10), 1025-1032 (2005).
https://doi.org/10.1007/s10800-005-7336-3
Zarrouk, Hammouti, B., Zarrok, H., Bouachrine, M., Khaled, K. and Al-Deyab, S., Corrosion inhibition of copper in nitric acid solutions using a new triazole derivative, Int. J. Electrochem. Sci., 7(1), 89-105(2012).
Zhao, J. and Chen, G., The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution, Electrochim. Acta., 69, 247-255(2012).