NiO at Paraffin Wax Soot Carbon Nanocomposites for Congo Red Dye Removal from Waste Water
J. Environ. Nanotechnol., Volume 8, No 1 (2019) pp. 52-67
Abstract
In this work, Nickel oxide-activated carbon nanocomposites (NiO-CNC) were synthesized using the carbon soot of paraffin wax by a simple combustion method and tested as an adsorbent for the removal of hazardous Congo red dye (CR) in the aqueous phase. The adsorption studies have been carried out thoroughly and elucidated with the impact of important parameters, viz, pH of the dye solution, initial dye concentration, contact time and sorbent dose, which were found to be 11, 200 ppm, 60 min, and 0.035 g/L, respectively. Sorption kinetics and isotherm modeling were studied and checked for their applicability with dye sorption system using synthesized NiO-CNC by non-linear fit. The co-relation coefficient of the Langmuir and Redlich-Peterson isotherm model was found to be 0.99 > 1. The pseudo-second order kinetic model was fitting well with the obtained equilibrium data with maximum sorption capacity (qe= 401.35 mg/g). The thermodynamic parameters have indicated that NiO-CNC system was more feasible, exothermic and spontaneous.
Full Text
Reference
Adamson, A. W. and Gast, A. P., Physical Chemistry of Surfaces, 6th Ed, Wiley Interscience, New York, (1997).
Benito, P., Herrero, M., Labajos, F. M., Rives, V., Royo, C., Latorre, N. and Monzon, A., Production of carbon nanotubes from methane: Use of CO-Zn-Al catalysts prepared by microwave-assisted synthesis, Chem. Eng. J., 149(1-3), 455-462(2009).
https://doi.org/10.1016/j.cej.2009.02.022
Dabrowski, A., Adsorption-from theory to practice, Adv. Colloid Interface Sci., 93(1-3), 135–224(2001).
Das, R., Hamid, S. B. A., Ali, M. E., Ismail, A. F., Annuar, M. S. M. and Ramakrishna, S., Multifunctional carbon nanotubes in water treatment: The present, past and future, Desal. 354, 160–179(2014).
https://doi.org/10.1016/j.desal.2014.09.032
Dikio, E. D. and Bixa, N., Carbon nanotubes synthesis by catalytic decomposition of ethyne using Fe/Ni catalyst on aluminium oxide support, Int. J. Appl. Chem., 7(1), 35-42(2011).
Dikio, E. D., Thema, F. T., Dikio, C. W. and Mtunzi, F. M., Synthesis of carbon nanotubes by catalytic decomposition of ethyne using Co-Zn-Al catalyst, Int. J. Nanotech. Appl., 4(2), 117(2010).
Dubinin, M. M. and Radushkevich, L. V., Equation of the characteristic curve of activated charcoal, Chem. Zentr., 1, 875–890(1947).
Farhat, S. and Scott, S. D., Review of the arc process modeling for fullerence and nanotubes production, J. Nanosci. Nanotechnol., 6 (5), 1189–1210(2006). https://doi.org/10.1166/jnn.2006.331
Freundlich, H. M. F., Over the adsorption in solution, J. Phy. Chem., 57, 385–470(1906).
Ghaedi, A. M., Ghaedi, M., Vafaei, A., Iravani, N., Keshavarz, M., Rad, M., Tyagi, I., Agarwal, S. and Gupta, V. K., Adsorption of copper(II) using modified activated carbon prepared from pomegranate wood; Optimization by bee algorithm and response surface methodology, J. Mol. Liq., 206, 195–206(2015).
https://doi.org/10.1016/j.molliq.2015.02.029
Gong, J. L., Wang, B., Zeng, G. M., Yang, C. P., Niu, C. G., Niu, Q. Y. and Liang, Y., Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotubes nanocomposite as adsorbent, J. Hazard. Mater., 164(2-3), 1517–1522(2009).
https://doi.org/10.1016/j.jhazmat.2008.09.072
Gunay, A., Arslankaya, E. and Tosun, I., Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics, J. Hazard. Mater., 146(1-2), 362–371(2007).
Gupta, V. K. and Saleh, T. A., Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – An overview, Environ. Sci. Pollut. Res., 20(5), 2828–2843(2013a).
https://doi.org/10.1007/s11356-013-1524-1
Gupta, V. K., Agarwal, S. and Saleh, T. A., Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater., 185, 17–23(2011).
https://doi.org/10.1016/j.jhazmat.2010.08.053
Gupta, V. K., Kumar,R., Nayak, A, Saleh, T. A. and Barakat, M. A., Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review, Adv. Colloid Interf. Sci. 193-194, 24–34(2013b).
https://doi.org/10.1016/j.cis.2013.03.003
Gupta, V. K., Sadegh, H., Yari, M., Shahryari-Ghoshekandi, R., Maazinejad, B. and Chahardori, M., Removal of ammonium ions from wastewater: A short review in development of efficient methods, Glob. J. Environ. Sci. Manag., 1(2), 149–158(2015).
https://doi.org/10.7508/GJESM.2015.02.007
Gupta, V. K., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Yari, M. and Yousefi-Nejat, O., Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA and PVA as adsorbent for removal of azo dyes from liquid phase, J. Mol. Liq., 206, 129–136(2015).
Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603–605(1993).
https://doi.org/10.1038/363603a0
Iijima, S., Helical microtubules of graphitic carbon, Nature, 354 (6348) 56–58(1991).
https://doi.org/10.1038/354056a0
Jin, W. J., Jeon, H. J., Kim, J. H., Youk, J. H., A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles, Synth. Met. 157(10-12), 454 – 459(2007).
https://doi.org/10.1016/j.synthmet.2007.05.011
Khan, A. R., Ataullah, R. and Al-Haddad, A., Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci., 194(1), 154–165(1997).
https://doi.org/10.1006/jcis.1997.5041
Kirupha, S. D., Kalaivani, S., Vidhyadevi, T., Premkumar, M. P., Baskaralingam, P., Sivanesan, S. and Ravikumar, L., Effective removal of heavy metal ions from aqueous solutions using a new chelating resin poly[2,5-(1,3,4-thiadiazole)-benzalimine]: Kinetic and thermodynamic study, J. Wat. Reuse Desal., 6(2), 310-324(2015).
https://doi.org/10.2166/wrd.2015.013).
Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361–1403(1918).
https://doi.org/10.1021/ja02242a004
Liang, Z., Wang, Y. X., Zhou, Y. and Liu, H., Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride, Chem. Eng. J., 152(1), 88–94(2009).
https://doi.org/10.1016/j.cej.2009.03.036
Liu, J., Shao, M., Li, Q., Wu, J., Xie, B., Zhang, S. and Qian, Y., Benzene-thermal route to carbon nanotubes at a moderate temperature, Carbon, 40, 2961-2973(2000).
Mahmoodian, H., Moradi, O., Shariatzadeha, B., Saleh, T. A., Tyagi, I., Maity, A., Asif, M. and Gupta, V. K., Enhanced removal of methyl orange from aqueous solutions by poly HEMA-Chitosan-MWCNT nano-composite, J. Mol. Liq., 202, 189–198(2014).
https://doi.org/10.1016/j.molliq.2014.10.040
Marti, N., Bouzas, A., Seco, A. and Ferrer, J., Struvite precipitation assessment in anaerobic digestion processes, Chem. Eng. J., 141 (1), 67–74(2008).
https://doi.org/10.1016/j.cej.2007.10.023
Murugesan, A., Vidhyadevi, T., Kalaivani, S. S., Premkumar, M. P., Ravikumar, L. and Sivanesan, S., Kinetic and thermodynamic studies on the removal of Zn2+ and Ni 2i+ from their aqueous solution using poly(pheylthiourea)imine, Chem. Eng. J. 197, 368-378(2012).
https://doi.org/10.1016/j.cej.2012.05.027
Nekouei, F., Nekouei, S., Tyagi, I. and Gupta, V. K., Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent, J. Mol. Liq. 201, 124–133(2015).
https://doi.org/10.1016/j.molliq.2014.09.027
Nyamori, V. O., Mhlanga, S. D. and Coville, N. J., The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials, J. Organomet. Chem., 693(13), 2205-2222(2008).
https://doi.org/10.1016/j.jorganchem.2008.04.003
Rafique, M. M. A. and Iqbal, J., Production of caron nanotubes by different routes-A review, J. Encapsulation Adsorption. Sci., 1 (2), 29-34(2011).
https://doi.org/10.4236/jeas.2011.12004
Redlich, O. and Peterson, D. L., A useful Adsorption isotherm, J. Phys. Chem., 63(6), 1024-1026(1959).
https://doi.org/10.1021/j150576a611
Roberts, J. D. and Caserio, M. C., Basic Principles of Organic Chemistry, 2nd ed. W.A. Benjamin Incorporation, London, 1977.
Sadegh, H., Shahryari-Ghoshekandi, R., Agarwal, S., Tyagi, I., Asif, M. and Gupta, V. K., Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study, J. Mol. Liq., 206, 151–158(2015b).
https://doi.org/10.1016/j.molliq.2015.02.007
Sadegh, H., Shahryari-Ghoshekandi, R., Tyagi, I., Agarwal, S. and Gupta, V. K., Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA), J. Mol. Liq., 207, 21–27(2015a).
https://doi.org/10.1016/j.molliq.2015.03.014
Shahryari-Ghoshekandi, R. and Sadegh, H., Kinetic study of the adsorption of synthetic dyes on graphene surfaces, Jordan J. Chem., 9 (4), 267–278(2014).
Shooto, D. N. and Dikio, E. D., Morphological characterization of Soot from the combustion of candle wax, Int. J. Electrochem. Sci., 6, 1269 – 1276(2011).
Temkin, M. J. and Pyzhev, V., Recent modifications to Langmuir isotherms, Acta Physicochim. URSS, 12, 217–225(1940).
Sips, R., On the structure of a catalyst surface, J. Chem. Phys., 16, 490–495(1948).
https://doi.org/10.1063/1.1746922
Terrones, M., Science and Technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes, Annu. Rev. Mater. Res., 33 (1) 419–501(2003).
https://doi.org/10.1146/annurev.matsci.33.012802.100255
Toth, J., State equations of the solid-gas interface layer, Acta Chim. Acad. Sci. Hung., 69, 311-317(1971).
Vidhyadevi, T., Murugesan, A., Kirupha, A. D., Baskaralingam, P., Ravikumar, L. and Sivanesan, S., Adsorption of Congo Red dye over pendent chlorobenzylidine rings present on polythioamide resin : Kinetic and equilibrium studies, Separ. Sci. Technol., 48(10), 1450-1458(2013).
https://doi.org/10.1080/01496395.2012.726306
Vijayaraghavan, K., Padmesh, T. V., Palanivelu, K. and Velan, M., Biosorption of nickel(II) ions onto sargassum wightii: Application of two-parameter and three-parameter isotherm models, J. Hazard. Mater. B., 133(1-3), 304 –308(2006).
https://doi.org/10.1016/j.jhazmat.2005.10.016
Wang, X., Lu, J. and Xing, B. S., Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter, Environ. Sci. Technol. 42 (9), 3207–3212(2008).
https://doi.org/10.1021/es702971g
Zare, K., Sadegh, H., Shahryari-Ghoshekandi, R., Maazinejad, B., Ali, V., Tyagi, I., Agarwal, S. and Gupta, V. K., J. Mol. Liq., 212, 266-271(2015).