Carbon Dioxide Decomposition over AlPO4-based Molecular Sieves
J. Environ. Nanotechnol., Volume 8, No 1 (2019) pp. 25-33
Abstract
Carbon dioxide is the most prevalent greenhouse gas that traps heat and raises the global temperature. To minimize this undesirable climate change, solid acid catalysts are to be used for the decomposition of CO2. Aluminophosphate molecular sieves have wide applications in the field of catalysis and adsorption. In this work, metal-incorporated aluminophosphate molecular sieves viz, magnesium aluminophosphate and manganese aluminophosphate (Mg-AlPO4 and Mn-AlPO4) were synthesized using low-cost n-butyl amine as a new template for high activity in the decomposition of CO2 into CO and O2. The FT-IR spectrum confirmed the formation of the tetrahedral framework of the materials. Powder X-ray diffraction pattern of calcinated Mg-AlPO4 and Mn-AlPO4 proved the well-crystalline nature of the material. The morphology of the material was studied by using SEM analysis. The BET surface area of calcinated Mg-AlPO4 and Mn-AlPO4 confirmed the nanoporous nature of the materials. Carbon dioxide was decomposed in a catalytic reactor using Mg-AlPO4 and Mn-AlPO4 as catalysts. For maximal CO2 conversion, the catalytic reaction parameters such as temperature, flow rate, catalyst dose and time on stream were determined. The conversion and product selectivity were dependent upon the acidity and pore size of the catalysts.
Full Text
Reference
Anastas, P. T., Kirchhoff, M. M. and Willia, T. C., Catalysis as a foundational pillar of green chemistry, Appl. Catalysis A-General, 221(1-2), 03-13(2001).
https://doi.org/10.1016/S0926-860X(01)00793-1
Campelo, J. M., Jaraba, M., Luna, D., Luque, R., Marinas, J. M. and Romero, A. A., Effect of phosphate precursor and organic additives on the structural and catalytic properties of Amorphous Mesoporous AlPO4 Materials, Chem. Mater., 15, 3352-3364(2003).
https://doi.org/10.1021/cm030206+
Campelo, M., Marinas, J. M., Mendioroz, S. and Pajares, J. A., Texture and surface chemistry of aluminium phosphates, J. Catal., 101(2), 484-495(1986).
https://doi.org/10.1016/0021-9517(86)90275-7
Cheralathan, K. K., Kannan, C., Arabindoo, B., Palanichamy, M. and Murugesan, V., Ethylation of toluene over aluminophosphate molecular sieves in the vapour phase, Ind. J. Chem. Tech., 39(9), 921-927(2000).
Gao, Q., Chen, J., Xu, R. and Yue, Y., Synthesis and characterization of a family of amine-intercatalated lamellar aluminophosphates from alcoholic system, Chem. Mater. 9(2), 457-462(1997).
https://doi.org/10.1021/cm9602611
Hardie, S. M. L., Garnett, M., Fallick, A. E., Rowland, A. P., Carbon-dioxide capture using a zeolite molecular sieve sampling system for isotopic (13C and 14C) studies of respiration, Radiocarbon, 47, 441-451(2005).
https://doi.org/10.1017/S0033822200035220
Liu, Y., Lotero, E. and Godwin, J. G., Jr., Effect of water on sulfuric acid-catalyzed esterification, J. Mol. Catal. A-Chem., 245(1-2), 132-140(2006).
https://doi.org/10.1016/j.molcata.2005.09.049
Pai, S. M., Newalkar, B. L. and Choudary, N. V., Microwave-hydrothermal synthesis and characterization of silico-aluminophosphate molecular sieve:SSZ-51, Micropor. Mesopo. Mat., 112, 357-367(2008).
https://doi.org/10.1016/j.micromeso.2007.10.010
Ruthven, D. M., Principle of adsorption & adsorption processes, John Wiley & sons, 1984.
Smit, B. and Maesen, T. L. M., Towards a molecular understanding of shape selectivity, Nature, 451, 671-678(2008).
https://doi.org/10.1038/nature06552
Taguchi, A. and Schuth, F., Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater., 77(1), 01-45(2005). https://doi.org/10.1016/j.micromeso.2004.06.030
Tanev, P. T., Pinnavaia, T. J., A neutral templating route to mesoporous molecular sieves, Science, 267(5199), 865-867(1995).