A Review on Carbonation of Concrete and its Predictive Modelling
J. Environ. Nanotechnol., Volume 7, No 4 (2018) pp. 76-91
Abstract
The phenomenon of concrete carbonation is a well-researched field. With the ever-rising concern about pollution in the environment, the need for understanding this phenomenon has increased manyfold. Although plenty of experimental data is available, useful and quantifiable generalization of influences of different factors affecting various parameters is a difficult task owing to the innumerable variability in experimental conditions and ingredients of the concretes tested and the specimens taken. Several studies have employed numerical and statistical modelling techniques to predict the depth of carbonation as a function of the age of concrete, compressive strength and other parameters affecting the carbonation of concrete. This paper was aimed at discussing several issues of uncertainty in the prediction and evaluation of carbonation propagation.
Full Text
Reference
Aprianti, E., Shafigh, P., Zawawi, R., Abu Hassan, Z. F., Introducing an effective curing method for mortar containing high volume cementitious materials, Constr. Build. Mater., 107, 365–377 (2016).
https://doi.org/10.1016/j.conbuildmat.2015.12.100
Atiş, C. D., Carbonation-Porosity-Strength Model for Fly Ash Concrete, J. Mater. Civ. Eng., 16(1), 91–94 (2004).
https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(91)
Atiş, C. D., Accelerated carbonation and testing of concrete made with fly ash, Constr. Build. Mater. 17(3), 147–152 (2003).
https://doi.org/10.1016/S0950-0618(02)00116-2
Baba, A., Senbu, O., A predictive procedure for carbonation depth of concrete with various types of surface layers, In: Proceedings of Fourth International Conference on Durability of Building Materials and Components. Singapore, pp 679–685
Balayssac, J. P., Détriché, C. H., Grandet, J., Effects of curing upon carbonation of concrete, Constr. Build. Mater., 9(2), 91–95 (1995).
https://doi.org/10.1016/0950-0618(95)00001-V
Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, Second Edition. Corrosion of Steel in Concrete: Understanding, Investigation and Repair, Second Edition, Taylor & Francis, (2006).
Burkan Isgor, O., Razaqpur, A. G., Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures, Cem. Concr. Compos., 26(1), 57–73(2004).
https://doi.org/10.1016/S0958-9465(02)00125-7
Cabrera, J. G., Woolley, G. R., A study of twenty-five year old pulverized fuel ash concrete used in foundation structures, Proc. lnstn Ciu. Engrs., 79(1), 149–166.
https://doi.org/10.1680/iicep.1985.1085
Castel, A., François, R., Arliguie, G., Effect of loading on carbonation penetration in reinforced concrete elements, Cem. Concr. Res., 29(4), 561–565 (1999).
https://doi.org/10.1016/S0008-8846(99)00017-4
Chang, J. J., Yeih, W., Huang, R., Chi, J. M., Mechanical properties of carbonated concrete, J. Chinese Inst. Eng., 26(4), 513–522 (2003).
https://doi.org/10.1080/02533839.2003.9670804
Chaussadent, T., Hornain, H., Rafai, N. and Ammouche, A., V. B.-B., Effect of Water-Cement Ratio of Cement Pastes on Microstructural Characteristics Related to Carbonation Process, Spec. Publ., 192, 523–538(2000).
Ekolu, S. O., A review on effects of curing, sheltering, and CO2concentration upon natural carbonation of concrete, Constr. Build. Mater. 127, 306–320 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.09.056
Ekolu, S. O., Heat curing practice in concrete precasting technology–problems and future directions, Concr. Soc. South Africa., 114, 5–10. (2006).
Fattuhi, N. I., Carbonation of concrete as affected by mix constituents and initial water curing period, Mater. Struct. 19(2), 131–136 (1986).
https://doi.org/10.1007/BF02481757
FIB, F. I. B., Model Code for Service Life Design, Int. Fed. Struct. Concr. (FIB). Switz. , 110 (2006).
https://doi.org/10.35789/fib.BULL.0034
Hills, T. P., Gordon, F., Florin, N. H., Fennell, P. S., Statistical analysis of the carbonation rate of concrete, Cem. Concr. Res., 72, 98–107 (2015).
https://doi.org/10.1016/j.cemconres.2015.02.007
Ho, D. W. S., Lewis, R. K., Carbonation of concrete and its prediction, Cem. Concr. Res., 17(3), 489–504 (1987).
https://doi.org/10.1016/0008-8846(87)90012-3
Ho, D. W. S., Lewis, R. K., The specification of concrete for reinforcement protection— performance criteria and compliance by strength, Cem. Concr. Res., 18(4), 584–594 (1988).
https://doi.org/10.1016/0008-8846(88)90051-8
Hobbs, D. W., Carbonation of concrete containing pfa, Mag. Concr. Res., 40(143), 69–78 (1988).
https://doi.org/10.1680/macr.1988.40.143.69
Houst, Y. F., Wittmann, F. H., Depth profiles of carbonates formed during natural carbonation, Cem. Concr. Res., 32(12), 1923–1930 (2002).
https://doi.org/10.1016/S0008-8846(02)00908-0
Hu, J., Cheng, X., Li, X., Deng, P., Wang, G., The Coupled Effect of Temperature and Carbonation on the Corrosion of Rebars in the Simulated Concrete Pore Solutions, J. Chem., 462605(2015).
https://doi.org/10.1155/2015/462605
Hussain, R. R., Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO2 transport, Comput. Concr., 8(2), 177–192(2011).
https://doi.org/10.12989/cac.2011.8.2.177
Jiang, L., Lin, B., Cai, Y., A model for predicting carbonation of high-volume fly ash concrete, Cem. Concr. Res., 30(5), 699–702 (2000).
https://doi.org/10.1016/S0008-8846(00)00227-1
Khan, M. I., Lynsdale, C. J., Strength, permeability, and carbonation of high-performance concrete, Cem. Concr. Res., 32(1), 123–131 (2002).
https://doi.org/10.1016/S0008-8846(01)00641-X
Khunthongkeaw, J., Tangtermsirikul, S., Leelawat, T., A study on carbonation depth prediction for fly ash concrete, Constr. Build. Mater., 20(9), 744–753 (2006).
https://doi.org/10.1016/j.conbuildmat.2005.01.052
Kim, J.-K., Lee, C.-S., Moisture diffusion of concrete considering self-desiccation at early ages, Cem. Concr. Res., 29(12), 1921–1927 (1999).
https://doi.org/10.1016/S0008-8846(99)00192-1
Kim, K.-H., Jeon, S.-E., Kim, J.-K., Yang, S., An experimental study on thermal conductivity of concrete, Cem. Concr. Res., 33(3), 363–371 (2003).
https://doi.org/10.1016/S0008-8846(02)00965-1
Kobayashi, K., Suzuki, K., Uno, Y., Carbonation of concrete structures and decomposition of C-S-H, Cem. Concr. Res., 24(1), 55–61 (1994).
https://doi.org/10.1016/0008-8846(94)90082-5
Kulakowski, M. P., Pereira, F. M., Molin, D. C. C. D., Carbonation-induced reinforcement corrosion in silica fume concrete, Constr. Build. Mater., 23(3), 1189–1195 (2009).
https://doi.org/10.1016/j.conbuildmat.2008.08.005
Kwon, S.-J., Song, H.-W., Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling, Cem. Concr. Res., 40(1), 119–127 (2010).
https://doi.org/10.1016/j.cemconres.2009.08.022
Lagerblad, B., Carbon dioxide uptake during concrete life cycle – State of the art, Carbon dioxide uptake during concrete life cycle – State of the art, Stockholm (2005).
Lanciani, A., Morabito, P., Rossi, P., Barberis, F., Berti, R., Capelli, A., Sona, G. S., Measurements of the thermophysical properties of structural materials in laboratory and in situ: Methods and instrumentation, High Temp. - High Press., 21(4), 391–400 (1989).
Leemann, A., Nygaard, P., Kaufmann, J., Loser, R., Relation between carbonation resistance, mix design and exposure of mortar and concrete, Cem. Concr. Compos., 62, 33–43 (2015).
https://doi.org/10.1016/j.cemconcomp.2015.04.020
Litvan, G. G., Meyer, A., Carbonation of granulated blast furnace slag cement concrete during twenty years of field exposure, In: ACI SP. 1445–1462
Liu, Y., Zhao, S., Yi, C., The Forecast of Carbonation Depth of Concrete Based on RBF Neural Network, In: 2008 Second International Symposium on Intelligent Information Technology Application. 544–548.
Lo, T. Y., Liao, W., K. Wong, C., Tang, W., Evaluation of carbonation resistance of paint coated concrete for buildings, Constr. Build. Mater., 107, 299–306 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.01.026
Lo, Y., Lee, H. M., Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy, Build. Environ. 37(5), 507–514 (2002).
https://doi.org/10.1016/S0360-1323(01)00052-X
Nagataki, S. and H. Ohga, M. A. M., Carbonation of Mortar in Relation to Ferrocement Construction, Mater. J., ,85(1), 17–25 (1988).
Neville, A. M., Properties of concrete. Properties of concrete, Longman London, 1995.
Papadakis, V. G., Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cem. Concr. Res., 30(2), 291–299 (2000).
https://doi.org/10.1016/S0008-8846(99)00249-5
Papadakis, V. G., Fardis, M. N., Vayenas, C. G., Fundamental Modeling and Experimental Investigation of Concrete Carbonation, Mater. J., 88(4), 363–373 (1991a).
Papadakis, V. G., Vayenas, C. G., Fardis, M. N., Hydration and Carbonation of Pozzolanic Cements, Mater. J., 89(2), 119–130 (1992).
Papadakis, V. G., Vayenas, C. G., Fardis, M. N., Experimental investigation and mathematical modeling of the concrete carbonation problem, Chem. Eng. Sci., 46(5), 1333–1338 (1991b).
https://doi.org/10.1016/0009-2509(91)85060-B
Parrott, L. J., Carbonation, moisture and empty pores, Adv. Cem. Res., 4(15), 111–118 (1992).
https://doi.org/10.1680/adcr.1992.4.15.111
Parrott, L. J., A Review of Carbonation in Reinforced Concrete. A Review of Carbonation in Reinforced Concrete, Cement and Concrete Association, (1987)
Pham, S. T., Prince, W., Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar, World Acad. Sci. Eng. Technol. Int. J. Civil, Environ. Struct. Constr. Archit. Eng., 7(6), 434–437 (2013).
Qiu-Dong, L. Y.-U. and W., Mechanism of Carbonation of Mortars and the Dependence of Carbonation on Pore Structure, Spec. Publ., 100, 1915–1944 (1987).
Roy, S. K., Poh, K. B., Northwood, D. o., Durability of concrete—accelerated carbonation and weathering studies, Build. Environ., 34(5), 597–606 (1999).
https://doi.org/10.1016/S0360-1323(98)00042-0
Russell, D., Basheer, P. A. M., Rankin, G. I. B., Long, A. E., Effect of relative humidity and air permeability on prediction of the rate of carbonation of concrete, In: Proceedings of the Institution of Civil Engineers - Structures and Buildings. ICE Publishing, 319–326 (2001)
Saetta, A. V, Schrefler, B. A., Vitaliani, R. V, 2 — D model for carbonation and moisture/heat flow in porous materials, Cem. Concr. Res., 25(8), 1703–1712 (1995).
https://doi.org/10.1016/0008-8846(95)00166-2
Šauman, Z., Carbonization of porous concrete and its main binding components, Cem. Concr. Res., 1(6), 645–662 (1971).
https://doi.org/10.1016/0008-8846(71)90019-6
Shafei, B., Alipour, A., Shinozuka, M., Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite‐element framework, Cem. Concr. Res., 42(2), 365–376 (2012).
https://doi.org/10.1016/j.cemconres.2011.11.001
Shigeyoshi Nagataki and Eun Kyum Kim, H. O., Effect of Curing Conditions on the Carbonation of Concrete with Fly Ash and the Corrosion of Reinforcement in Long-Term Tests, Spec. Publ., 91, 521–540 (1986).
https://doi.org/10.14359/10086
Slegers, P. A., Rouxhet, P. G., Carbonation of the hydration products of tricalcium silicate, Cem. Concr. Res., 6(3), 381–388 (1976).
https://doi.org/10.1016/0008-8846(76)90101-0
Song, H.-W., Kwon, S.-J., Permeability characteristics of carbonated concrete considering capillary pore structure, Cem. Concr. Res., 37(6), 909–915 (2007).
https://doi.org/10.1016/j.cemconres.2007.03.011
Song, H.-W., Kwon, S.-J., Byun, K.-J., Park, C.-K., Predicting carbonation in early-aged cracked concrete, Cem. Concr. Res., 36(5), 979–989 (2006).
https://doi.org/10.1016/j.cemconres.2005.12.019
Song, K.-I., Song, J.-K., Lee, B. Y., Yang, K.-H., Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar, Adv. Mater. Sci. Eng., 2014, 1–11(2014).
https://doi.org/10.1155/2014/326458
Sulapha, P., Wong F., S., Wee T., H., Swaddiwudhipong, S., Carbonation of Concrete Containing Mineral Admixtures, J. Mater. Civ. Eng., 15(2), 134–143(2003).
https://doi.org/10.1061/(ASCE)0899-1561(2003)1 5:2(134)
Taffese, W. Z., Sistonen, E., Puttonen, J., CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods, Constr. Build. Mater., 100, 70–82(2015).
https://doi.org/10.1016/j.conbuildmat.2015.09.058
Thiery, M., Villain, G., Dangla, P., Platret, G., Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics, Cem. Concr. Res., 37(7), 1047–1058(2007).
https://doi.org/10.1016/j.cemconres.2007.04.002
Thomas, M. D. A., Matthews, J. D., Carbonation of fly ash concrete, Mag. Concr. Res., 44(160), 217–228(1992).
https://doi.org/10.1680/macr.1992.44.160.217
Thomas, M. D. A., Osborne, G. J., Matthewst, J. D., Cripwell, J. B., A comparison of the properties of OPC, PFA and ggbs concretes in reinforced concrete tank walls of slender section, Mag. Concr. Res., 42(152), 127–134(1990).
https://doi.org/10.1680/macr.1990.42.152.127
Tuutti, K., Corrosion of steel in concrete, Corrosion of steel in concrete, Swedish Cement and Concrete Research Institute Stockholm, Stockholm, 1982.
Valcuende, M., Parra, C., Natural carbonation of self-compacting concretes, Constr. Build. Mater., 24(5), 848–853(2010).
https://doi.org/10.1016/j.conbuildmat.2009.10.021
Verbeck, G. J., Mechanisms of Corrosion of Steel in Concrete, Spec. Publ., 49, 21–38(1975).
https://doi.org/10.14359/17530
Wang, X.-Y., Lee, H.-S., A model for predicting the carbonation depth of concrete containing low-calcium fly ash, Constr. Build. Mater., 23(2), 725–733(2009).
https://doi.org/10.1016/j.conbuildmat.2008.02.019
Wierig HJ, Longtime studies on the carbonation of concrete under normal outdoor exposure, In: RILE [M Symposium on Durability of Concrete under Normal Outdoor Exposure. Hannover, pp 239–249
Xue, B., Pei, J., Sheng, Y., Li, R., Effect of curing compounds on the properties and microstructure of cement concretes, Constr. Build. Mater., 101, 410–416(2015).