Technologies for Removal of Arsenic from Water: An Overview
J. Environ. Nanotechnol., Volume 7, No 4 (2018) pp. 65-75
Abstract
Arsenic contamination in drinking water is a major global issue. Arsenicosis may be caused due to chronic consumption of arsenic-contaminated water. Economical and convenient removal of arsenic from water has remained a great challenge. The most commonly employed technologies for the removal of arsenic from water are coagulation and flocculation, filtration, membrane separation, ion exchange and adsorption. Nanotechnology has the potential to play an important role in providing clean water for human utilization. Solar oxidation and removal of arsenic (SORAS) is a very simple technique to bring down arsenic content from contaminated water.
Full Text
Reference
Ahmed, S., Ahmed, A., Rafat, M., Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes, J. Saudi Chem. Soc. 22(8), 993–1002 (2018).
https://doi.org/10.1016/j.jscs.2018.03.002
Akin, I., Arslan, G., Tor, A., Ersoz, M., Cengeloglu, Y., Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud, J. Hazard. Mater. 235–236, 62–68 (2012).
https://doi.org/10.1016/j.jhazmat.2012.06.024
Arroyo, P., Ansola, G., Miera, L. E. S. de, Effects of substrate, vegetation and flow on arsenic and zinc removal efficiency and microbial diversity in constructed wetlands, Ecol. Eng. 51, 95–103 (2013).
https://doi.org/10.1016/j.ecoleng.2012.12.013
Baig, J. A., Kazi, T. G., Shah, A. Q., Kandhro, G. A., Afridi, H. I., Khan, S., Kolachi, N. F., Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water, J. Hazard. Mater. 178(1–3), 941–948 (2010).
https://doi.org/10.1016/j.jhazmat.2010.02.028
Balasubramanian, N., Kojima, T., Srinivasakannan, C., Arsenic removal through electrocoagulation: Kinetic and statistical modeling, Chem. Eng. J. 155(1–2), 76–82 (2009).
https://doi.org/10.1016/j.cej.2009.06.038
Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., Haasch, R., Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent, Water Res. 42(3), 633–642 (2008).
https://doi.org/10.1016/j.watres.2007.08.014
Bora, A. J., Gogoi, S., Baruah, G., Dutta, R. K., Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH, J. Environ. Chem. Eng. 4(3), 2683–2691 (2016).
https://doi.org/10.1016/j.jece.2016.05.012
Bordoloi, S., Nath, S. K., Gogoi, S., Dutta, R. K., Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies, J. Hazard. Mater. 260, 618–626 (2013).
https://doi.org/10.1016/j.jhazmat.2013.06.017
Bowell, R. J., Sorption of arsenic by iron oxides and oxyhydroxides in soils, Appl. Geochemistry 9(3), 279–286 (1994).
https://doi.org/10.1016/0883-2927(94)90038-8
Buddhawong, S., Kuschk, P., Mattusch, J., Wiessner, A., Stottmeister, U., Removal of Arsenic and Zinc Using Different Laboratory Model Wetland Systems, Eng. Life Sci. 5(3), 247–252 (2005).
https://doi.org/10.1002/elsc.200520076
Calo, J. M., Madhavan, L., Kirchner, J., Bain, E. J., Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system, Chem. Eng. J. 189–190, 237–243 (2012).
https://doi.org/10.1016/j.cej.2012.02.063
Casiot, C., Morin, G., Juillot, F., Bruneel, O., Personné, J.-C., Leblanc, M., Duquesne, K., Bonnefoy, V., Elbaz-Poulichet, F., Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France), Water Res. 37(12), 2929–2936 (2003).
https://doi.org/10.1016/S0043-1354(03)00080-0
CHEN, C.-C., CHUNG, Y.-C., Arsenic Removal Using a Biopolymer Chitosan Sorbent, J. Environ. Sci. Heal. Part A 41(4), 645–658 (2006).
https://doi.org/10.1080/10934520600575044
Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., Xu, G., Liu, Z., Zhang, L., Preparation of activated carbon from cotton stalk and its application in supercapacitor, J. Solid State Electrochem. 17(4), 1005–1012 (2013).
https://doi.org/10.1007/s10008-012-1946-6
Chen, Y.-N., Chai, L.-Y., Shu, Y.-D., Study of arsenic(V) adsorption on bone char from aqueous solution, J. Hazard. Mater. 160(1), 168–172 (2008).
https://doi.org/10.1016/j.jhazmat.2008.02.120
Cherian, S., Oliveira, M. M., Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities, Environ. Sci. Technol. 39(24), 9377–9390 (2005).
https://doi.org/10.1021/es051134l
Chowdhury, S. R., Yanful, E. K., Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles, Water Environ. J. 25(3), 429–437 (2011).
https://doi.org/10.1111/j.1747-6593.2010.00242.x
Cong, C. J., Liao, L., Li, J. C., Fan, L. X., Zhang, K. L., Synthesis, structure and ferromagnetic properties of Mn-doped ZnO nanoparticles, Nanotechnology 16(6), 981–984 (2005).
https://doi.org/10.1088/0957-4484/16/6/060
Cullen, W. R., Reimer, K. J., Arsenic speciation in the environment, Chem. Rev. 89(4), 713–764 (1989).
https://doi.org/10.1021/cr00094a002
Czerniczyniec, M., Farías, S., Magallanes, J., Cicerone, D., Arsenic(V) Adsorption onto Biogenic Hydroxyapatite: Solution Composition Effects, Water. Air. Soil Pollut. 180(1–4), 75–82 (2007).
https://doi.org/10.1007/s11270-006-9251-6
Dermatas, D., Moon, D. H., Menounou, N., Meng, X., Hires, R., An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test, J. Hazard. Mater. 116(1–2), 25–38 (2004).
https://doi.org/10.1016/j.jhazmat.2004.04.023
Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., Reeves, R. D., PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES, Int. J. Phytoremediation 11(2), 97–114 (2009).
https://doi.org/10.1080/15226510802378368
Eslamian, S., Amiri, M. J., Koupai, J. A., Karimi, S. S., Reclamation of unconventional water using nano zero-valent iron particles: an application for groundwater, Int. J. Water 7(1/2), 1 (2013).
https://doi.org/10.1504/IJW.2013.051975
Fostier, A. H., Pereira, M. do S. S., Rath, S., Guimarães, J. R., Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles, Chemosphere 72(2), 319–324 (2008).
https://doi.org/10.1016/j.chemosphere.2008.01.067
Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., Ikeda, H., A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump, Appl. Geochemistry 18(8), 1267–1278 (2003).
https://doi.org/10.1016/S0883-2927(03)00011-8
Ghimire, K. N., Inoue, K., Makino, K., Miyajima, T., ADSORPTIVE REMOVAL OF ARSENIC USING ORANGE JUICE RESIDUE, Sep. Sci. Technol. 37(12), 2785–2799 (2002).
https://doi.org/10.1081/SS-120005466
Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., Cocke, D. L., Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products, J. Hazard. Mater. 139(2), 220–231 (2007).
https://doi.org/10.1016/j.jhazmat.2005.11.108
Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., Hu, Q., Application of titanium dioxide in arsenic removal from water: A review, J. Hazard. Mater. 215–216, 1–16 (2012).
https://doi.org/10.1016/j.jhazmat.2012.02.069
Hansen, H. K., Ribeiro, A., Mateus, E., Biosorption of arsenic(V) with Lessonia nigrescens, Miner. Eng. 19(5), 486–490 (2006).
https://doi.org/10.1016/j.mineng.2005.08.018
Herbel, M., Fendorf, S., Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands, Chem. Geol. 228(1–3), 16–32 (2006).
https://doi.org/10.1016/j.chemgeo.2005.11.016
Hering, J. G., Chen, P.-Y., Wilkie, J. A., Elimelech, M., Liang, S., Arsenic removal by ferric chloride, J. Am. Water Works Assoc. 88(4), 155–167 (1996).
https://doi.org/10.1002/j.1551-8833.1996.tb06541.x
Hu, F. P., Chen, W., Chen, X. M., Tong, Z. G., Experiment Study on the Treatment of Arsenic Drinking Water in Integrated Efficient-Whirling Clarifier, Adv. Mater. Res. 518–523, 3691–3694 (2012).
https://doi.org/10.4028/www.scientific.net/AMR.518-523.3691
Huang, J. W., Poynton, C. Y., Kochian, L. V., Elless, M. P., Phytofiltration of Arsenic from Drinking Water Using Arsenic-Hyperaccumulating Ferns, Environ. Sci. Technol. 38(12), 3412–3417 (2004).
https://doi.org/10.1021/es0351645
Hudson-Edwards, K. A., Houghton, S. L., Osborn, A., Extraction and analysis of arsenic in soils and sediments, TrAC Trends Anal. Chem. 23(10–11), 745–752 (2004).
https://doi.org/10.1016/j.trac.2004.07.010
Kamaruddin, M. A., Yusoff, M. S., Aziz, H. A., Hung, Y.-T., Sustainable treatment of landfill leachate, Appl. Water Sci. 5(2), 113–126 (2015).
https://doi.org/10.1007/s13201-014-0177-7
Katsoyiannis, I. A., Zouboulis, A. I., Application of biological processes for the removal of arsenic from groundwaters, Water Res. 38(1), 17–26 (2004).
https://doi.org/10.1016/j.watres.2003.09.011
Khalid, N., Ahmad, S., Toheed, A., Ahmed, J., Immobilization of Arsenic on Rice Husk, Adsorpt. Sci. Technol. 16(8), 655–666 (1998).
https://doi.org/10.1177/026361749801600806
Kobya, M., Gebologlu, U., Ulu, F., Oncel, S., Demirbas, E., Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes, Electrochim. Acta 56(14), 5060–5070 (2011).
https://doi.org/10.1016/j.electacta.2011.03.086
Kumari, P., Sharma, P., Srivastava, S., Srivastava, M. M., Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system, Int. J. Miner. Process. 78(3), 131–139 (2006).
https://doi.org/10.1016/j.minpro.2005.10.001
Lacasa, E., Cañizares, P., Sáez, C., Fernández, F. J., Rodrigo, M. A., Removal of arsenic by iron and aluminium electrochemically assisted coagulation, Sep. Purif. Technol. 79(1), 15–19 (2011).
https://doi.org/10.1016/j.seppur.2011.03.005
LACKOVIC, J. A., NIKOLAIDIS, N. P., DOBBS, G. M., Inorganic Arsenic Removal by Zero-Valent Iron, Environ. Eng. Sci. 17(1), 29–39 (2000).
https://doi.org/10.1089/ees.2000.17.29
Li, L. X., Tao, J., Geng, X., An, B. G., Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification, Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 29(1), 111–116 (2013).
https://doi.org/10.3866/PKU.WHXB201211091
Lien, H.-L., Wilkin, R. T., High-level arsenite removal from groundwater by zero-valent iron, Chemosphere 59(3), 377–386 (2005).
https://doi.org/10.1016/j.chemosphere.2004.10.055
Lizama A., K., Fletcher, T. D., Sun, G., Removal processes for arsenic in constructed wetlands, Chemosphere 84(8), 1032–1043 (2011).
https://doi.org/10.1016/j.chemosphere.2011.04.022
Llorens, E., Obradors, J., Alarcón-Herrera, M. T., Modelling the non-biogenic steps of arsenic retention in horizontal subsurface flow constructed wetlands, Chem. Eng. J. 223, 657–664 (2013).
https://doi.org/10.1016/j.cej.2013.02.102
Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shiple, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V. L., The effect of nanocrystalline magnetite size on arsenic removal, Sci. Technol. Adv. Mater. 8(1–2), 71–75 (2007).
https://doi.org/10.1016/j.stam.2006.10.005
Meng, X., Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride, Water Res. 34(4), 1255–1261 (2000).
https://doi.org/10.1016/S0043-1354(99)00272-9
Misaelides, P., Application of natural zeolites in environmental remediation: A short review, Microporous Mesoporous Mater. 144(1–3), 15–18 (2011).
https://doi.org/10.1016/j.micromeso.2011.03.024
Mohamed CHIBAN, Application of low-cost adsorbents for arsenic removal: A review, J Environ Chem Ecotoxicol.
https://doi.org/10.5897/JECE11.013
Mohan, D., Pittman, C. U., Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater. 142(1–2), 1–53 (2007).
https://doi.org/10.1016/j.jhazmat.2007.01.006
Mohora, E., Rončević, S., Dalmacija, B., Agbaba, J., Watson, M., Karlović, E., Dalmacija, M., Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor, J. Hazard. Mater. 235–236, 257–264 (2012).
https://doi.org/10.1016/j.jhazmat.2012.07.056
Murugesan, G. S., Sathishkumar, M., Swaminathan, K., Arsenic removal from groundwater by pretreated waste tea fungal biomass, Bioresour. Technol. 97(3), 483–487 (2006).
https://doi.org/10.1016/j.biortech.2005.03.008
Páez-Espino, D., Tamames, J., de Lorenzo, V., Cánovas, D., Microbial responses to environmental arsenic, BioMetals 22(1), 117–130 (2009).
https://doi.org/10.1007/s10534-008-9195-y
Pal, P., Manna, A. K., Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Water Res. 44(19), 5750–5760 (2010).
https://doi.org/10.1016/j.watres.2010.05.031
Pokhrel, D., Viraraghavan, T., Biological filtration for removal of arsenic from drinking water, J. Environ. Manage. 90(5), 1956–1961 (2009).
https://doi.org/10.1016/j.jenvman.2009.01.004
Qu, D., Wang, J., Hou, D., Luan, Z., Fan, B., Zhao, C., Experimental study of arsenic removal by direct contact membrane distillation, J. Hazard. Mater. 163(2–3), 874–879 (2009).
https://doi.org/10.1016/j.jhazmat.2008.07.042
Reddy, K. J., McDonald, K. J., King, H., A novel arsenic removal process for water using cupric oxide nanoparticles, J. Colloid Interface Sci. 397, 96–102 (2013).
https://doi.org/10.1016/j.jcis.2013.01.041
Saalfield, S. L., Bostick, B. C., Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems, Environ. Sci. Technol. 43(23), 8787–8793 (2009).
https://doi.org/10.1021/es901651k
Sarı, A., Tuzen, M., Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies, J. Hazard. Mater. 164(2–3), 1372–1378 (2009).
https://doi.org/10.1016/j.jhazmat.2008.09.047
Sarkar, S., SenGupta, A. K., Prakash, P., The Donnan Membrane Principle: Opportunities for Sustainable Engineered Processes and Materials, Environ. Sci. Technol. 44(4), 1161–1166 (2010).
https://doi.org/10.1021/es9024029
Shafique, U., Ijaz, A., Salman, M., Zaman, W. uz, Jamil, N., Rehman, R., Javaid, A., Removal of arsenic from water using pine leaves, J. Taiwan Inst. Chem. Eng. 43(2), 256–263 (2012).
https://doi.org/10.1016/j.jtice.2011.10.006
Shen, M. W. Y., Shah, D., Chen, W., Da Silva, N., Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter, Biotechnol. Prog. 28(3), 654–661 (2012).
https://doi.org/10.1002/btpr.1531
Shevade, S., Ford, R. G., Use of synthetic zeolites for arsenate removal from pollutant water, Water Res. 38(14–15), 3197–3204 (2004).
https://doi.org/10.1016/j.watres.2004.04.026
Soner Altundoğan, H., Altundoğan, S., Tümen, F., Bildik, M., Arsenic removal from aqueous solutions by adsorption on red mud, Waste Manag. 20(8), 761–767 (2000).
https://doi.org/10.1016/S0956-053X(00)00031-3
Sulaymon, A. H., Mohammed, A. A., Al-Musawi, T. J., Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae, Environ. Sci. Pollut. Res. 20(5), 3011–3023 (2013).
https://doi.org/10.1007/s11356-012-1208-2
Swarnkar, V., Tomar, R., Use of Surfactant-Modified Zeolites for Arsenate Removal from Pollutant Water, J. Dispers. Sci. Technol. 33(6), 913–918 (2012).
https://doi.org/10.1080/01932691.2011.584795
Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., Soma, M., Interaction of Inorganic Arsenic with Biogenic Manganese Oxide Produced by a Mn-Oxidizing Fungus, Strain KR21-2, Environ. Sci. Technol. 38(24), 6618–6624 (2004).
https://doi.org/10.1021/es049226i
Teixeira, M. C., Ciminelli, V. S. T., Development of a Biosorbent for Arsenite: Structural Modeling Based on X-ray Spectroscopy, Environ. Sci. Technol. 39(3), 895–900 (2005).
https://doi.org/10.1021/es049513m
Tuzen, M., Sarı, A., Mendil, D., Uluozlu, O. D., Soylak, M., Dogan, M., Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum, J. Hazard. Mater. 165(1–3), 566–572 (2009).
https://doi.org/10.1016/j.jhazmat.2008.10.020
van Genuchten, C. M., Addy, S. E. A., Peña, J., Gadgil, A. J., Removing Arsenic from Synthetic Groundwater with Iron Electrocoagulation: An Fe and As K-Edge EXAFS Study, Environ. Sci. Technol. 46(2), 986–994 (2012).
https://doi.org/10.1021/es201913a
Velizarov, S., Transport of arsenate through anion-exchange membranes in Donnan dialysis, J. Memb. Sci. 425–426, 243–250 (2013).
https://doi.org/10.1016/j.memsci.2012.09.012
Wang, J., Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22(45), 23710–23725 (2012).
https://doi.org/10.1039/c2jm34066f
Wang, S., Zhao, X., On the potential of biological treatment for arsenic contaminated soils and groundwater, J. Environ. Manage. 90(8), 2367–2376 (2009).
https://doi.org/10.1016/j.jenvman.2009.02.001
Wasiuddin, N. M., Tango, M., Islam, M. R., A Novel Method for Arsenic Removal at Low Concentrations, Energy Sources 24(11), 1031–1041 (2002).
https://doi.org/10.1080/00908310290086914
Yang, H., Kannappan, S., Pandian, A. S., Jang, J. H., Lee, Y. S., Lu, W., Graphene supercapacitor with both high power and energy density, Nanotechnology.
https://doi.org/10.1088/1361-6528/aa8948
Yarlagadda, S., Gude, V. G., Camacho, L. M., Pinappu, S., Deng, S., Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process, J. Hazard. Mater. 192(3), 1388–1394 (2011).
https://doi.org/10.1016/j.jhazmat.2011.06.056
Ye, M., Huang, J., Chen, R., He, Q. Z., Removeal of Arsenic(III) from Water by Using a New Class of Zero-Valent Iron Modified Mesoporous Silica Molecular Sieves SBA-15, Adv. Mater. Res. 356–360, 423–429 (2011).
https://doi.org/10.4028/www.scientific.net/AMR.356-360.423
Yusof, A. M., Malek, N. A. N. N., Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J. Hazard. Mater. 162(2–3), 1019–1024 (2009).
https://doi.org/10.1016/j.jhazmat.2008.05.134
Zaw, M., Emett, M. T., Arsenic removal from water using advanced oxidation processes, Toxicol. Lett. 133(1), 113–118 (2002).
https://doi.org/10.1016/S0378-4274(02)00081-4
Zhao, B., Zhao, H., Ni, J., Arsenate removal by Donnan dialysis: Effects of the accompanying components, Sep. Purif. Technol. 72(3), 250–255 (2010).
https://doi.org/10.1016/j.seppur.2010.02.013
Zouboulis, A. I., Katsoyiannis, I. A., Recent advances in the bioremediation of arsenic-contaminated groundwaters, Environ. Int. 31(2), 213–219 (2005).
https://doi.org/10.1016/j.envint.2004.09.018
Zurita, F., Del Toro-Sánchez, C. L., Gutierrez-Lomelí, M., Rodriguez-Sahagún, A., Castellanos-Hernandez, O. A., Ramírez-Martínez, G., White, J. R., Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms, Ecol. Eng. 47, 101–104 (2012).
https://doi.org/10.1016/j.ecoleng.2012.06.018
Zwijenberg, H., Koops, G., Wessling, M., Solar driven membrane pervaporation for desalination processes, J. Memb. Sci. 250(1–2), 235–246 (2005).