Open Access

Technologies for Removal of Arsenic from Water: An Overview

Sonam, Civil Engineering Department, Indian Institute of Technology (Banaras Hindu University), Varanasi, India. Devendra Mohan devendra.civ@iitbhu.ac.in
Civil Engineering Department, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.


J. Environ. Nanotechnol., Volume 7, No 4 (2018) pp. 65-75

https://doi.org/10.13074/jent.2018.12.184333

PDF


Abstract

Arsenic contamination in drinking water is a major global issue. Arsenicosis may be caused due to chronic consumption of arsenic-contaminated water. Economical and convenient removal of arsenic from water has remained a great challenge. The most commonly employed technologies for the removal of arsenic from water are coagulation and flocculation, filtration, membrane separation, ion exchange and adsorption. Nanotechnology has the potential to play an important role in providing clean water for human utilization. Solar oxidation and removal of arsenic (SORAS) is a very simple technique to bring down arsenic content from contaminated water.

Full Text

Reference


Ahmed, S., Ahmed, A., Rafat, M., Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes, J. Saudi Chem. Soc. 22(8), 993–1002 (2018).

https://doi.org/10.1016/j.jscs.2018.03.002

Akin, I., Arslan, G., Tor, A., Ersoz, M., Cengeloglu, Y., Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud, J. Hazard. Mater. 235–236, 62–68 (2012).

https://doi.org/10.1016/j.jhazmat.2012.06.024

Arroyo, P., Ansola, G., Miera, L. E. S. de, Effects of substrate, vegetation and flow on arsenic and zinc removal efficiency and microbial diversity in constructed wetlands, Ecol. Eng. 51, 95–103 (2013).

https://doi.org/10.1016/j.ecoleng.2012.12.013

Baig, J. A., Kazi, T. G., Shah, A. Q., Kandhro, G. A., Afridi, H. I., Khan, S., Kolachi, N. F., Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water, J. Hazard. Mater. 178(1–3), 941–948 (2010).

https://doi.org/10.1016/j.jhazmat.2010.02.028

Balasubramanian, N., Kojima, T., Srinivasakannan, C., Arsenic removal through electrocoagulation: Kinetic and statistical modeling, Chem. Eng. J. 155(1–2), 76–82 (2009).

https://doi.org/10.1016/j.cej.2009.06.038

Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., Haasch, R., Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent, Water Res. 42(3), 633–642 (2008).

https://doi.org/10.1016/j.watres.2007.08.014

Bora, A. J., Gogoi, S., Baruah, G., Dutta, R. K., Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH, J. Environ. Chem. Eng. 4(3), 2683–2691 (2016).

https://doi.org/10.1016/j.jece.2016.05.012

Bordoloi, S., Nath, S. K., Gogoi, S., Dutta, R. K., Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies, J. Hazard. Mater. 260, 618–626 (2013).

https://doi.org/10.1016/j.jhazmat.2013.06.017

Bowell, R. J., Sorption of arsenic by iron oxides and oxyhydroxides in soils, Appl. Geochemistry 9(3), 279–286 (1994).

https://doi.org/10.1016/0883-2927(94)90038-8

Buddhawong, S., Kuschk, P., Mattusch, J., Wiessner, A., Stottmeister, U., Removal of Arsenic and Zinc Using Different Laboratory Model Wetland Systems, Eng. Life Sci. 5(3), 247–252 (2005).

https://doi.org/10.1002/elsc.200520076

Calo, J. M., Madhavan, L., Kirchner, J., Bain, E. J., Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system, Chem. Eng. J. 189–190, 237–243 (2012).

https://doi.org/10.1016/j.cej.2012.02.063

Casiot, C., Morin, G., Juillot, F., Bruneel, O., Personné, J.-C., Leblanc, M., Duquesne, K., Bonnefoy, V., Elbaz-Poulichet, F., Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France), Water Res. 37(12), 2929–2936 (2003).

https://doi.org/10.1016/S0043-1354(03)00080-0

CHEN, C.-C., CHUNG, Y.-C., Arsenic Removal Using a Biopolymer Chitosan Sorbent, J. Environ. Sci. Heal. Part A 41(4), 645–658 (2006).

https://doi.org/10.1080/10934520600575044

Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., Xu, G., Liu, Z., Zhang, L., Preparation of activated carbon from cotton stalk and its application in supercapacitor, J. Solid State Electrochem. 17(4), 1005–1012 (2013).

https://doi.org/10.1007/s10008-012-1946-6

Chen, Y.-N., Chai, L.-Y., Shu, Y.-D., Study of arsenic(V) adsorption on bone char from aqueous solution, J. Hazard. Mater. 160(1), 168–172 (2008).

https://doi.org/10.1016/j.jhazmat.2008.02.120

Cherian, S., Oliveira, M. M., Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities, Environ. Sci. Technol. 39(24), 9377–9390 (2005).

https://doi.org/10.1021/es051134l

Chowdhury, S. R., Yanful, E. K., Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles, Water Environ. J. 25(3), 429–437 (2011).

https://doi.org/10.1111/j.1747-6593.2010.00242.x

Cong, C. J., Liao, L., Li, J. C., Fan, L. X., Zhang, K. L., Synthesis, structure and ferromagnetic properties of Mn-doped ZnO nanoparticles, Nanotechnology 16(6), 981–984 (2005).

https://doi.org/10.1088/0957-4484/16/6/060

Cullen, W. R., Reimer, K. J., Arsenic speciation in the environment, Chem. Rev. 89(4), 713–764 (1989).

https://doi.org/10.1021/cr00094a002

Czerniczyniec, M., Farías, S., Magallanes, J., Cicerone, D., Arsenic(V) Adsorption onto Biogenic Hydroxyapatite: Solution Composition Effects, Water. Air. Soil Pollut. 180(1–4), 75–82 (2007).

https://doi.org/10.1007/s11270-006-9251-6

Dermatas, D., Moon, D. H., Menounou, N., Meng, X., Hires, R., An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test, J. Hazard. Mater. 116(1–2), 25–38 (2004).

https://doi.org/10.1016/j.jhazmat.2004.04.023

Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., Reeves, R. D., PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES, Int. J. Phytoremediation 11(2), 97–114 (2009).

https://doi.org/10.1080/15226510802378368

Eslamian, S., Amiri, M. J., Koupai, J. A., Karimi, S. S., Reclamation of unconventional water using nano zero-valent iron particles: an application for groundwater, Int. J. Water 7(1/2), 1 (2013).

https://doi.org/10.1504/IJW.2013.051975

Fostier, A. H., Pereira, M. do S. S., Rath, S., Guimarães, J. R., Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles, Chemosphere 72(2), 319–324 (2008).

https://doi.org/10.1016/j.chemosphere.2008.01.067

Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., Ikeda, H., A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump, Appl. Geochemistry 18(8), 1267–1278 (2003).

https://doi.org/10.1016/S0883-2927(03)00011-8

Ghimire, K. N., Inoue, K., Makino, K., Miyajima, T., ADSORPTIVE REMOVAL OF ARSENIC USING ORANGE JUICE RESIDUE, Sep. Sci. Technol. 37(12), 2785–2799 (2002).

https://doi.org/10.1081/SS-120005466

Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., Cocke, D. L., Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products, J. Hazard. Mater. 139(2), 220–231 (2007).

https://doi.org/10.1016/j.jhazmat.2005.11.108

Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., Hu, Q., Application of titanium dioxide in arsenic removal from water: A review, J. Hazard. Mater. 215–216, 1–16 (2012).

https://doi.org/10.1016/j.jhazmat.2012.02.069

Hansen, H. K., Ribeiro, A., Mateus, E., Biosorption of arsenic(V) with Lessonia nigrescens, Miner. Eng. 19(5), 486–490 (2006).

https://doi.org/10.1016/j.mineng.2005.08.018

Herbel, M., Fendorf, S., Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands, Chem. Geol. 228(1–3), 16–32 (2006).

https://doi.org/10.1016/j.chemgeo.2005.11.016

Hering, J. G., Chen, P.-Y., Wilkie, J. A., Elimelech, M., Liang, S., Arsenic removal by ferric chloride, J. Am. Water Works Assoc. 88(4), 155–167 (1996).

https://doi.org/10.1002/j.1551-8833.1996.tb06541.x

Hu, F. P., Chen, W., Chen, X. M., Tong, Z. G., Experiment Study on the Treatment of Arsenic Drinking Water in Integrated Efficient-Whirling Clarifier, Adv. Mater. Res. 518–523, 3691–3694 (2012).

https://doi.org/10.4028/www.scientific.net/AMR.518-523.3691

Huang, J. W., Poynton, C. Y., Kochian, L. V., Elless, M. P., Phytofiltration of Arsenic from Drinking Water Using Arsenic-Hyperaccumulating Ferns, Environ. Sci. Technol. 38(12), 3412–3417 (2004).

https://doi.org/10.1021/es0351645

Hudson-Edwards, K. A., Houghton, S. L., Osborn, A., Extraction and analysis of arsenic in soils and sediments, TrAC Trends Anal. Chem. 23(10–11), 745–752 (2004).

https://doi.org/10.1016/j.trac.2004.07.010

Kamaruddin, M. A., Yusoff, M. S., Aziz, H. A., Hung, Y.-T., Sustainable treatment of landfill leachate, Appl. Water Sci. 5(2), 113–126 (2015).

https://doi.org/10.1007/s13201-014-0177-7

Katsoyiannis, I. A., Zouboulis, A. I., Application of biological processes for the removal of arsenic from groundwaters, Water Res. 38(1), 17–26 (2004).

https://doi.org/10.1016/j.watres.2003.09.011

Khalid, N., Ahmad, S., Toheed, A., Ahmed, J., Immobilization of Arsenic on Rice Husk, Adsorpt. Sci. Technol. 16(8), 655–666 (1998).

https://doi.org/10.1177/026361749801600806

Kobya, M., Gebologlu, U., Ulu, F., Oncel, S., Demirbas, E., Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes, Electrochim. Acta 56(14), 5060–5070 (2011).

https://doi.org/10.1016/j.electacta.2011.03.086

Kumari, P., Sharma, P., Srivastava, S., Srivastava, M. M., Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system, Int. J. Miner. Process. 78(3), 131–139 (2006).

https://doi.org/10.1016/j.minpro.2005.10.001

Lacasa, E., Cañizares, P., Sáez, C., Fernández, F. J., Rodrigo, M. A., Removal of arsenic by iron and aluminium electrochemically assisted coagulation, Sep. Purif. Technol. 79(1), 15–19 (2011).

https://doi.org/10.1016/j.seppur.2011.03.005

LACKOVIC, J. A., NIKOLAIDIS, N. P., DOBBS, G. M., Inorganic Arsenic Removal by Zero-Valent Iron, Environ. Eng. Sci. 17(1), 29–39 (2000).

https://doi.org/10.1089/ees.2000.17.29

Li, L. X., Tao, J., Geng, X., An, B. G., Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification, Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 29(1), 111–116 (2013).

https://doi.org/10.3866/PKU.WHXB201211091

Lien, H.-L., Wilkin, R. T., High-level arsenite removal from groundwater by zero-valent iron, Chemosphere 59(3), 377–386 (2005).

https://doi.org/10.1016/j.chemosphere.2004.10.055

Lizama A., K., Fletcher, T. D., Sun, G., Removal processes for arsenic in constructed wetlands, Chemosphere 84(8), 1032–1043 (2011).

https://doi.org/10.1016/j.chemosphere.2011.04.022

Llorens, E., Obradors, J., Alarcón-Herrera, M. T., Modelling the non-biogenic steps of arsenic retention in horizontal subsurface flow constructed wetlands, Chem. Eng. J. 223, 657–664 (2013).

https://doi.org/10.1016/j.cej.2013.02.102

Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shiple, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V. L., The effect of nanocrystalline magnetite size on arsenic removal, Sci. Technol. Adv. Mater. 8(1–2), 71–75 (2007).

https://doi.org/10.1016/j.stam.2006.10.005

Meng, X., Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride, Water Res. 34(4), 1255–1261 (2000).

https://doi.org/10.1016/S0043-1354(99)00272-9

Misaelides, P., Application of natural zeolites in environmental remediation: A short review, Microporous Mesoporous Mater. 144(1–3), 15–18 (2011).

https://doi.org/10.1016/j.micromeso.2011.03.024

Mohamed CHIBAN, Application of low-cost adsorbents for arsenic removal: A review, J Environ Chem Ecotoxicol.

https://doi.org/10.5897/JECE11.013

Mohan, D., Pittman, C. U., Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater. 142(1–2), 1–53 (2007).

https://doi.org/10.1016/j.jhazmat.2007.01.006

Mohora, E., Rončević, S., Dalmacija, B., Agbaba, J., Watson, M., Karlović, E., Dalmacija, M., Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor, J. Hazard. Mater. 235–236, 257–264 (2012).

https://doi.org/10.1016/j.jhazmat.2012.07.056

Murugesan, G. S., Sathishkumar, M., Swaminathan, K., Arsenic removal from groundwater by pretreated waste tea fungal biomass, Bioresour. Technol. 97(3), 483–487 (2006).

https://doi.org/10.1016/j.biortech.2005.03.008

Páez-Espino, D., Tamames, J., de Lorenzo, V., Cánovas, D., Microbial responses to environmental arsenic, BioMetals 22(1), 117–130 (2009).

https://doi.org/10.1007/s10534-008-9195-y

Pal, P., Manna, A. K., Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Water Res. 44(19), 5750–5760 (2010).

https://doi.org/10.1016/j.watres.2010.05.031

Pokhrel, D., Viraraghavan, T., Biological filtration for removal of arsenic from drinking water, J. Environ. Manage. 90(5), 1956–1961 (2009).

https://doi.org/10.1016/j.jenvman.2009.01.004

Qu, D., Wang, J., Hou, D., Luan, Z., Fan, B., Zhao, C., Experimental study of arsenic removal by direct contact membrane distillation, J. Hazard. Mater. 163(2–3), 874–879 (2009).

https://doi.org/10.1016/j.jhazmat.2008.07.042

Reddy, K. J., McDonald, K. J., King, H., A novel arsenic removal process for water using cupric oxide nanoparticles, J. Colloid Interface Sci. 397, 96–102 (2013).

https://doi.org/10.1016/j.jcis.2013.01.041

Saalfield, S. L., Bostick, B. C., Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems, Environ. Sci. Technol. 43(23), 8787–8793 (2009).

https://doi.org/10.1021/es901651k

Sarı, A., Tuzen, M., Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies, J. Hazard. Mater. 164(2–3), 1372–1378 (2009).

https://doi.org/10.1016/j.jhazmat.2008.09.047

Sarkar, S., SenGupta, A. K., Prakash, P., The Donnan Membrane Principle: Opportunities for Sustainable Engineered Processes and Materials, Environ. Sci. Technol. 44(4), 1161–1166 (2010).

https://doi.org/10.1021/es9024029

Shafique, U., Ijaz, A., Salman, M., Zaman, W. uz, Jamil, N., Rehman, R., Javaid, A., Removal of arsenic from water using pine leaves, J. Taiwan Inst. Chem. Eng. 43(2), 256–263 (2012).

https://doi.org/10.1016/j.jtice.2011.10.006

Shen, M. W. Y., Shah, D., Chen, W., Da Silva, N., Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter, Biotechnol. Prog. 28(3), 654–661 (2012).

https://doi.org/10.1002/btpr.1531

Shevade, S., Ford, R. G., Use of synthetic zeolites for arsenate removal from pollutant water, Water Res. 38(14–15), 3197–3204 (2004).

https://doi.org/10.1016/j.watres.2004.04.026

Soner Altundoğan, H., Altundoğan, S., Tümen, F., Bildik, M., Arsenic removal from aqueous solutions by adsorption on red mud, Waste Manag. 20(8), 761–767 (2000).

https://doi.org/10.1016/S0956-053X(00)00031-3

Sulaymon, A. H., Mohammed, A. A., Al-Musawi, T. J., Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae, Environ. Sci. Pollut. Res. 20(5), 3011–3023 (2013).

https://doi.org/10.1007/s11356-012-1208-2

Swarnkar, V., Tomar, R., Use of Surfactant-Modified Zeolites for Arsenate Removal from Pollutant Water, J. Dispers. Sci. Technol. 33(6), 913–918 (2012).

https://doi.org/10.1080/01932691.2011.584795

Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., Soma, M., Interaction of Inorganic Arsenic with Biogenic Manganese Oxide Produced by a Mn-Oxidizing Fungus, Strain KR21-2, Environ. Sci. Technol. 38(24), 6618–6624 (2004).

https://doi.org/10.1021/es049226i

Teixeira, M. C., Ciminelli, V. S. T., Development of a Biosorbent for Arsenite: Structural Modeling Based on X-ray Spectroscopy, Environ. Sci. Technol. 39(3), 895–900 (2005).

https://doi.org/10.1021/es049513m

Tuzen, M., Sarı, A., Mendil, D., Uluozlu, O. D., Soylak, M., Dogan, M., Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum, J. Hazard. Mater. 165(1–3), 566–572 (2009).

https://doi.org/10.1016/j.jhazmat.2008.10.020

van Genuchten, C. M., Addy, S. E. A., Peña, J., Gadgil, A. J., Removing Arsenic from Synthetic Groundwater with Iron Electrocoagulation: An Fe and As K-Edge EXAFS Study, Environ. Sci. Technol. 46(2), 986–994 (2012).

https://doi.org/10.1021/es201913a

Velizarov, S., Transport of arsenate through anion-exchange membranes in Donnan dialysis, J. Memb. Sci. 425–426, 243–250 (2013).

https://doi.org/10.1016/j.memsci.2012.09.012

Wang, J., Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22(45), 23710–23725 (2012).

https://doi.org/10.1039/c2jm34066f

Wang, S., Zhao, X., On the potential of biological treatment for arsenic contaminated soils and groundwater, J. Environ. Manage. 90(8), 2367–2376 (2009).

https://doi.org/10.1016/j.jenvman.2009.02.001

Wasiuddin, N. M., Tango, M., Islam, M. R., A Novel Method for Arsenic Removal at Low Concentrations, Energy Sources 24(11), 1031–1041 (2002).

https://doi.org/10.1080/00908310290086914

Yang, H., Kannappan, S., Pandian, A. S., Jang, J. H., Lee, Y. S., Lu, W., Graphene supercapacitor with both high power and energy density, Nanotechnology.

https://doi.org/10.1088/1361-6528/aa8948

Yarlagadda, S., Gude, V. G., Camacho, L. M., Pinappu, S., Deng, S., Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process, J. Hazard. Mater. 192(3), 1388–1394 (2011).

https://doi.org/10.1016/j.jhazmat.2011.06.056

Ye, M., Huang, J., Chen, R., He, Q. Z., Removeal of Arsenic(III) from Water by Using a New Class of Zero-Valent Iron Modified Mesoporous Silica Molecular Sieves SBA-15, Adv. Mater. Res. 356–360, 423–429 (2011).

https://doi.org/10.4028/www.scientific.net/AMR.356-360.423

Yusof, A. M., Malek, N. A. N. N., Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J. Hazard. Mater. 162(2–3), 1019–1024 (2009).

https://doi.org/10.1016/j.jhazmat.2008.05.134

Zaw, M., Emett, M. T., Arsenic removal from water using advanced oxidation processes, Toxicol. Lett. 133(1), 113–118 (2002).

https://doi.org/10.1016/S0378-4274(02)00081-4

Zhao, B., Zhao, H., Ni, J., Arsenate removal by Donnan dialysis: Effects of the accompanying components, Sep. Purif. Technol. 72(3), 250–255 (2010).

https://doi.org/10.1016/j.seppur.2010.02.013

Zouboulis, A. I., Katsoyiannis, I. A., Recent advances in the bioremediation of arsenic-contaminated groundwaters, Environ. Int. 31(2), 213–219 (2005).

https://doi.org/10.1016/j.envint.2004.09.018

Zurita, F., Del Toro-Sánchez, C. L., Gutierrez-Lomelí, M., Rodriguez-Sahagún, A., Castellanos-Hernandez, O. A., Ramírez-Martínez, G., White, J. R., Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms, Ecol. Eng. 47, 101–104 (2012).

https://doi.org/10.1016/j.ecoleng.2012.06.018

Zwijenberg, H., Koops, G., Wessling, M., Solar driven membrane pervaporation for desalination processes, J. Memb. Sci. 250(1–2), 235–246 (2005).

https://doi.org/10.1016/j.memsci.2004.10.029

Contact Us

Powered by

Powered by OJS