Open Access

Studies on La2In2-xAl2O9 Oxide Ion Conductors

N. Kalaivani, Department of chemistry, Government Arts College, Dharmapuri, TN, India. M. Rajasekhar kalaikanishka2010@gmail.com
Department of chemistry, Government Arts College, Dharmapuri, TN, India.


J. Environ. Nanotechnol., Volume 7, No 2 (2018) pp. 36-40

https://doi.org/10.13074/jent.2018.06.182307

PDF


Abstract

La2In2-xAl2O(0 ≤ x ≤ 0.5) oxide ion conductor is synthesized with La(NO3)3, In(NO3)3, Al(No3)3and aspartic acid (fuel) by assisted combustion method which is heating at 550ËšC for 6 hours. X-ray diffraction analysis indicates that the orthorhombicstructure of La2In2-xAl2O9. Scanning electron microscopy is used to identify the surface morphology. The particle size of the synthesized product is measured by Scherrer equation and transmission electron microscope, its size 30 nm. The influence of the Al for Indium in La2In2-xAl2O9 of the phase transition has investigated by XRD studies. The formation of La2In2-xAl2O9 is confirmed by FTIR studies. The Arrhenius plot shows the ionic conductivity of La2In2-xAl2O9 on variation of temperature. This result indicates that assisted combustion method is a promising method to prepare nanocrystalline La2In2-xAl2O9 oxide ion conductor for solid oxide fuel cell.

Full Text

Reference


Bansal, N. P. and Zhong, Z., Combustion synthesis of Sm0.5Sr0.5CoO3−x and La0.6Sr0.4CoO3−x nanopowders for solid oxide fuel cell cathodes, J. Fuel Sources, 158(1), 148–153(2006).

https://doi.org/10.1016/j.jpowsour.2005.09.057

Berger, D., Matei, C., Papa, F., Macovei, D., Fruth, V. and Deloume, J. P., Pure and doped lanthanum manganites obtained by combustion method, J. Eur. Ceram. Soc., 27 4395–4398(2007).

https://doi.org/10.1016/j.jeurceramsoc.2007.02.164

Cullity, B. D., Elements of X-ray Diffraction, Second Edition, Addision Wiley, New York (1978).

Garcia, R. and Hirata, G. A., New combustion synthesis technique for the production of (InxGa1−x)2O3 powders: Hydrazine/metal nitrate method, J. Mater. Res., Vol. 16(4), 1059-1065( 2001) .

Ghosh, A., Sahu, A. K., Gulnar, A. K. and Suri, A. K., Synthesis and characterization of lanthanum strontium manganite, Scr. Mater., 52(12), 1305–1309(2005).

https://doi.org/10.1016/j.scriptamat.2005.02.020

Jain, S. R. Adiga, K. C. and Pai Verneker, V. R., A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame, 40, 71-79(1981).

https://doi.org/10.1016/0010-2180(81)90111-5

Kostogloudis, G. Ch., Vasilakos, N. and Ftikos, Ch., Preparation and characterization of Pr1-xSrxMnO3 ± δ (x = 0, 0.15, 0.3, 0.4, 0.5) as a potential SOFC cathode material operating at intermediate temperatures (500–700 °C), J. Euro Ceram Soc., 17(12), 1513-1521(1997).

https://doi.org/10.1016/S0955-2219(97)00038-1

Lopez, O.A., Mckrittrick, J. and Shea, L. E., Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges, J. Luin., 71(1), 01-11(1997).

https://doi.org/10.1016/S0022-2313(96)00123-8

Rajasekhar, M., Kalaivani, N., Preparation and Characterization of Gd1-xSrxAlO3 Cathode for Solid Oxide Fuel Cell, J. Environ. Nanotechnol.,, 6(3), 64-67(2017)

https://doi.org/10.13074/jent.2017.09.173269

Sundar Manoharan, S. and Patil, K. C., Combustion Synthesis of Metal Chromite Powders, J. Amer. Ceram. Soc., 75(4), 1012-1015 (1992).

https://doi.org/10.1111/j.1151-2916.1992.tb04177.x

Contact Us

Powered by

Powered by OJS