Synthesis, Characterization, Directional Crystal Growth Mechanism and Photocatalytic Activity of Three-Dimensional Hierarchical Fern-Like Nanostructures of BaTiO3
J. Environ. Nanotechnol., Volume 7, No 3 (2018) pp. 39-50
Abstract
BaTiO3 with fern-like nano-structural morphology has been successfully synthesized via a simple sol-gel method followed by ageing process and was characterized by X-ray powder diffraction (PXRD) and Raman spectroscopy. The composition and the morphology was confirmed by scanning electron microscopy (SEM) with Energy dispersive X-ray spectroscopy and (high-resolution) transmission electron microscopy (TEM/HRTEM). The bonding linkage between Ba, Ti and O in the BaTiO3 sample was obtained by FTIR study. The band gap was calculated by using Kubelka-Munk function based on UV-absorption spectroscopic studies. The binding state of the elements present in BaTiO3 were obtained from XPS analysis. The details pertaining to thermal decomposition process of the uncalcined barium titanyl oxalate to barium titanate was obtained from TGA analysis. The surface area was determined by BET adsorption-desorption isotherms. The plausible directional growth mechanism of different BaTiO3 facets forming fern-like clusters is discussed in detail. The fern-like BaTiO3 exhibited only Ì´ 10% higher photocatalytic activity compared to the BaTiO3 with coral-like morphology for the degradation of methyl orange (MO) dye under UV irradiation.The photocatalytic degradation was also explored by the addition of H2O2 as electron scavenger, KI as surface hydroxyl radical scavenger and TBA as bulk hydroxyl radical scavenger.
Full Text
Reference
Adikary, S. U. and Chan, H. L.W., Ferroelectric and dielectric properties of sol-gel derived BaxSr1−xTiO3 thin films, Thin Solid Films, 424, 70-74, (2003).
https://doi.org/S0040-6090(02)00918.5
Baoxiang, W., Yichao, Y., Chenjie, L., Shoushan, Y. and Kezheng, C., Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties. Dalton Trans., 42, 10042-10055, (2013).
https://doi.org/10.1039/C3DT50504A
Barbosa, J.G., Pereira, M. R., Moura, C., Mendes, J. A. and Almeida, B. G., Barium titanate thin films deposited by electrophoresis on p-Doped Si (001) Substrates, J. Nanosci. Nanotechnol., 11, 8700-8704, (2011).
https://doi.org/10.1166/jnn.2011.3494
Chia-Yu, W., Shu-Hao, K., Yu-Ming, H., Wen-Chieh, H., Feri, A. and Yeong-Her, W., High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator, IEEE Electron Device Lett., 32, 90-92 (2011).
https://doi.org/10.1109/LED.2010.2084559
Devi, L. G. and Kavitha R., Enhanced photocatalytic activity of sulfur-doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification. Mater. Chem. Phys., 143, 1300-1308, (2014).
https://doi.org/10.1016/j.matchemphys.2013.11.038
Devi, L. G. and Nithya, P. M., Photocatalytic activity of Hemin (Fe (III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processes, Inorg. Chem. Front., 1, 127-138, (2018).
https://doi.org/10.1039/C7Q100590C
Devi, L. G. and Nithya, P. M., Preparation, characterization and photocatalytic activity of BaTiF6 and BaTiO3: A comparative study, J. Environ. Chem. Eng., 3, 3565-3573, (2018).
https://doi.org/10.106/j.jece.2017.04.038
Edrissi, M. and Hosseinabadi, H. A., Sythesis of coral‐like and spherical nanoparticles of barium titanate using factorial and Taguchi experimental design, Mat. Wiss. u. Werkstofftech., 41, 154-160, (2010).
https://doi.org/10.1002/mawe.201000569
Feng, D., Kazumi, K., Hiroaki, I., Satoshi, W., Hajime, H., Makoto and Kuwabarae, Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis, Cryst. Eng. Comm., 12, 3441-3444, (2010).
https://doi.org/10.1039/C003587D
Feng. Q., Hirasawa, M., Kajiyoshi, K. and Yanagisawa, K., Hydrothermal soft chemical synthesis of BaTiO3 and titanium oxide with cocoon-like particle morphology, J. Mater. Sci., 42, 640-645, (2007).
https://doi.org/10.1007/s10853-006-1142-0
Harale, N, S., Kamble, D. L., Gang, M. G., Rao, V. K., Kim, J. H. and Patil, P. S., Exotic fern-like morphologies, Mater. Today, 16, 452-453, (2013).
https://doi.org/10.1016/j.mattod.2013.10.002
Jenq-dar, T. and Fang, T., Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal‐decomposition behavior of barium titanium citrate, J. Am. Ceram. Soc., 82, 1409-1415, (1999).
https://doi.org/10.1111/j.1151-2916.1999.tbo1937.x
Jianfei, X., Sakae, T., Shigeo, H., Mikio, S. and Zenbe, N., The thermal decomposition process of barium titanate oxalate tetrahydrate, J. Ceram. Soc. Jpn., 107, 27-30, (1999).
https://doi.org/10.2109/jcersj.107.27
Jing, Y. W., Chaolun, L. and Mingmei, W., Double-sided comb-like ZnO nanostructures and their derivative nanofern arrays grown by a facile metal hydrothermal oxidation route, Cryst. Growth Des., 9, 409- 413, (2009).
https://doi.org/10.1021/cg8006348
Junhan, Y., Louis, P., Wolfgang, M., Sigmund, J. and Nino, C., Sol-gel based synthesis of complex oxide nanofibers, J. Sol-Gel Sci. Techn., 42, 323-329, (2007).
https://doi.org/10.1007/s10971-007-0736-6
Kavitha. R. and Devi, L. G., Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis, J. Environ. Chem. Eng., 2, 857-867, (2014).
https://doi.org/10.1016/j/jece.2014.02.016
Lei, C., Yonghong, N., Man, W. and Xiang, M., Magnetic Ni/α-Ni(OH)2 porous superstructures: synthesis, influencing factors and applications in the removal of heavy metals, RSC Adv., 3, 3585-3591, (2013).
https://doi.org/10.1039/C3RA22504F
Luis, A. P., Maria, J. D., Francisco, J. G., Maria, J. S., Concepcion, R. and Jose, M. C., Synthesis of needle-like BaTiO3 particles from the thermal decomposition of a citrate precursor under sample controlled reaction temperature conditions, J. Mater. Chem., 13, 2234-2241, (2003).
https://doi.org/10.1039/B305828J
Mandal, T. K., Characterization of tetragonal BaTiO3 nanopowders prepared with a new soft chemistry route, Mater. Lett., 61, 850-854, (2007).
https://doi.org/10.1016/j.matlet.2006.06.006
Margarita, G., Antonieta, G., Felipe, C., David. J., Genevieve, C., Elder, D. R. and Damien, B., Eu-Doped BaTiO3 Powder and Film from Sol-Gel Process with Polyvinylpyrrolidone Additive, Int. J. Mol. Sci., 10, 4088-4101, (2009).
https://doi.org/10.3390/ijms10094088
Marjeta, M. K., Ines, B., Bojan, B. and Danilo, S., The morphology control of BaTiO3 particles synthesized in water and a water/ethanol solvent, J. Am. Ceram. Soc., 96, 3401-3409, (2013).
https://doi.org/10.1111/jace.12607
Markus, W., Lewis, W. and Alan, H., XPS analysis of submicrometer barium titanate powder, J. Am. Ceram. Soc., 87, 371-377, (2004).
https://doi.org/10.111/j.1551-2916-2004.00371.x
Michael, V., Sanjay, M., Nicolas, L., Volker, H. and Timo. D., Sol-Gel Synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes, J. Sol-Gel Sci. Technol., 15, 145-158, (2000).
https://doi.org/10.1023/A:1008795419020
Minhua, C., Tianfu, L., Song, G., Genban, S., Xinglong, W., Changwen, H. and Zhong, L. W., Single-Crystal Dendritic Micro-Pines of Magnetica-Fe2O3: Large-Scale Synthesis Formation Mechanism and Properties, Angew Chem. Int. Ed., 44, 4197-4201, (2005).
https://doi.org/10.1002/ange.200500448
Miot, C., Husson, E., Proust, C., Erre, R. and Coutures, J. P., X-ray photoelectron spectroscopy characterization of barium titanate ceramics prepared by the citric route residual carbon study, J. Mater. Res., 12, 2388-2392(1997).
https://doi.org/10.1557/JMR.1997.0316
Nayak, S., Sahoo, B., Chakia, T. K. and Khastgir, D., Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behaviour, RSC Adv., 4, 1212-1224, (2014).
https://doi.org/10.1039/C3RA44815K
Morsi, T. M., Budakowski, W. R., Abd-El-Aziz, A. S. and Friesen, K. L., Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals, Environ. Sci. Technol., 34, 1018-1022(2000).
https://doi.org/10.1021/es9907360
Samanta, P. K., Basak, S. and Chaudhuri, P. R., The secret life of zinc oxide, Mater. Today, 14, 295-315, (2011).
Tapan, K. S. and Andrey, L. R., Nonspherical noble metal nanoparticles: colloid‐chemical synthesis and morphology control, Adv. Mater., 22, 1781-1804, (2010).
https://doi.org/10.1002/adma.200901271
Vijatoic, M. M., Bobic, J. D. and Stojanovic, B. D., History and challenges of barium titanate: Part II, Sci. Sinter., 40, 235-244, (2008).
https://doi.org/10.2298/SOs0803235V
Vivek, P., Babita, B. and Rajender, S. V., Self-Assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis, ACS, 3, 728-736, (2009).
https://doi.org/10.1021/nn800903p
Yang, Z., Jianhua, H., Chee, L. M. and Xianhua, W., Effects of site substitutions and concentration on up conversion luminescence of Er3+-doped perovskite titanate, Opt. Express, 19, 1824-1829, (2011).
https://doi.org/10.1364/OE.19.001824
Yong, C. Z., Gen, L.W., Kun, W. L., Ming, Z., Xiao, Y. H. and Hao, W., Facile synthesis of submicron BaTiO3 crystallites by a liquid–solid reaction method, J. Cryst. Growth, 290, 513-517, (2006).
https://doi.org/10.1016/j.jcrysgro.2006.02.012
Yu-Fong, H., Hung-Shin, S., Chi-Wen, L., Ping, X., Darrick, J. W., Kyle, J. R., Daniel, E. H. and Hsing-Lin, W., Morphology control of Cu crystals on modified conjugated polymer surfaces, Cryst. Growth Des., 12, 1778-1784, (2012).
https://doi.org/10.1021/cg201200r
Yury, V. K., Kirill, A. K., Neira, I. S., Takaaki, T., Tadashi, I., Tomoaki, W., Naonori, S. and Masahiro, Y., A novel controlled and high-yield solvothermal drying route to nanosized barium titanate powders, J. Phys. Chem. C, 111, 7306-7318, (2007).
https://doi.org/10.1021/jp0678103
Zhang, S., Fusong, J., Gang, Q. and Congyi, L., Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol–gel and surfactant-templated methods, Mater. Lett., 62, 2225-2228, (2008).
https://doi.org/10.1016/j.matlet.2007.11.055
Zhao, C., Krall, A., Zhao, H., Zhang, Q. and Li, Y., Ultrasonic spray pyrolysissynthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction, Int. J. Hydrogen Energy, 37, 9967-9976, (2012).
https://doi.org/j.ijhydene.2012.04.003
Zhao, D., Ying, D., Wen, C., Xinmei, P. and Jihong, L., Synthesis and characterization of bowl-like single-crystalline BaTiO3 nanoparticles, Nanoscale Res. Lett., 5, 1217-1221, (2010).
https://doi.org/10.1007/s11671-010-9629-7
Zhibin, L., Jianmin, L., Yugen, Z. and Sheming, L., Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method., J. Mater. Chem., 10, 2629-2631, (2000).
https://doi.org/10.1039/B0055554
Zhiqiao, H., Xing, X., Shuang, S., Lei, X., Jinjun, T., Jianmeng, C. and Bing, Y., A Visible Light-Driven Titanium Dioxide Photocatalyst Codoped with Lanthanum and Iodine: An Application in the Degradation of Oxalic Acid, J. Phys. Chem. C, 112, 16431-16437, (2008).
https://doi.org/10.1021/jp803291c
Zhou, L., Yu, R., Zhu, K., Yao, J., Xing, X., Wang, D. and Xu, Preparation of plank-like BaTiO3 by hydrothermal soft chemical process from layered titanate precursors, Key Eng. Mater., 336-338, 66-68, (2007).