Photocatalytic Reaction Pathway and Mechanism of Degradation of Pesticide using Nano Catalysts
J. Environ. Nanotechnol., Volume 7, No 2 (2018) pp. 26-30
Abstract
In the present study, dichlorvos was degraded with photocatalytic active p-type semiconductor and n - type semiconductors. The nano - WO3 was synthesized fromsodium tungstate andnano - TiO2 was synthesized through sol-gel technique from titanium (IV) isopropoxide by hydrothermal treatment. The synthesized materials were characterized by different techniques such as XRD, FTIR, and SEM . In order to find out their photocatalytic ability and degradation of dichlorvos, experiment was carried out in aqueous suspension under UV light. The reaction pathway and mechanism were studied. From the evaluation, nano- TiO2 showed higher activity when compare with other catalyst.
Full Text
Reference
Balkaya, N., A study of optimal experimental conditions in the photocatalytic degradation of an organophosphorus insecticide, Environ. Technol. 20(6), 617–623 (1999).
https://doi.org/10.1080/09593332008616856
Harada, K., Hisanaga, T., Tanaka, K., Photocatalytic Degradation of Organophosphurus Insecticides in Aq Semiconductor Suspensions, Water Res., 24(11), 1415–1417 (1990).
https://doi.org/10.1016/0043-1354(90)90162-Y
Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95(1), 69–96 (1995).
https://doi.org/10.1021/cr00033a004
Lu, M. C., Roam, G. D., Chen, J. N., Huang, C. P., Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface, Water Res. 30(7), 1670–1676 (1996).
https://doi.org/10.1016/0043-1354(96)00037-1
Mileson, B. E., Chambers, J. E., Chen, W. L., Dettbarn, W., Ehrich, M., Eldefrawi, a T., Gaylor, D. W., Hamernik, K., Hodgson, E., Karczmar, a G., Padilla, S., Pope, C. N., Richardson, R. J., Saunders, D. R., Sheets, L. P., Sultatos, L. G., Wallace, K. B., Common mechanism of toxicity: a case study of organophosphorus pesticides., Toxicol. Sci.41(1), 8–20 (1998).
https://doi.org/10.1006/toxs.1997.2431
Mennear, J. H., Dichlorvos: A regulatory conundrum, Regul. Toxicol. Pharmacol. 27(3), 265–272 (1998).
https://doi.org/10.1006/rtph.1998.1217
Naman, S. A., Khammas, Z. A. A., Hussein, F. M., Photo-oxidative degradation of insecticide dichlorovos by a combined semiconductors and organic sensitizers in aqueous media, J. Photochem. Photobiol. A Chem. 153(1–3), 229–236 (2002).
https://doi.org/10.1016/S1010-6030(02)00235-6
Nogueira, H. I. S., Cavaleiro, A. M. V., Rocha, J., Trindade, T., De Jesus, J. D. P., Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids, Mater. Res. Bull. 39(4–5), 683–693 (2004).
https://doi.org/10.1016/j.materresbull.2003.11.004
Paredes, J. I., Marti, a, Tasco, J. M. D., Martı, a, Graphene Oxide Dispersions in Organic Solvents Graphene Oxide Dispersions in Organic Solvents, 24(August), 10560–10564 (2008).
https://doi.org/10.1021/la801744a
Ragnarsdottir, K. V., Environmental fate and toxicology of organophosphate pesticides, J. Geol. Soc. London. 157(4), 859–876 (2000).
https://doi.org/10.1144/jgs.157.4.859
Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., Teng, H., Graphite Oxide as a Photocatalyst for Hydrogen Production from Water, Adv. Funct. Mater. 20(14), 2255–2262 (2010).