Open Access

Influence of Copper Doping on Structural, Morphological, Electrical Properties of WO3 Nanoparticles

R. Priya,
Department of Physics, Info Institute of Engineering, Coimbatore, TN, India.
R. Balan Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India.


J. Environ. Nanotechnol., Volume 7, No 2 (2018) pp. 07-17

https://doi.org/10.13074/jent.2018.06.182310

PDF


Abstract

In this work, Pure and Cu-doped WO3 nanoparticles have been synthesized using the wet chemical method. The effect of Cu-doping on the structural, morphological, electrical and dielectric properties of WO3 nanoparticles was investigated. XRD pattern described that Cu-doping without affecting the monoclinic structure of the samples and the few peaks corresponding to Cu, it conforms secondary phase. The presence of more distortion centers and interstitials in Cu-doped sample led to increasing the crystallite size. FESEM analysis has shown the morphology of doped and pure WO3 nanoparticles to be quasi-spherical. EDAX spectra confirmed the presence of W, O and Cu. The DC and AC conductivity have been measured at a temperature range from 303-403K in the frequency range of 42Hz-5MHz. The DC conductivity was found to increase with increasing Cu and indicates the semiconducting nature. The activation energy has also been observed to decrease with Cu doping. The DC conductivity of the present samples follows small polaron hopping. The frequency dependence of dielectric constant (ε), dielectric loss (tan δ) and AC conductivity of WO3 nanoparticles of different Cu doping concentration at different temperature was measured. Temperature variation of frequency exponents in 15 wt% Cu-doped WO3 suggests that AC conduction is attributed to be correlated barrier hopping.

Full Text

Reference


Ahsan, M.,Tesfamichael, T.,Ionescu, M., Bell, J. andMotta, N., Low temperature CO sensitive nanostructured WO3 thin films doped with Fe, Sensor. Actuator. B., 162(1), 14– 21(2012).

https://doi.org/10.1016/j.snb.2011.11.038

Changhua Wang, XintongZhang , Bo Yuan, Yuxi Wang, Panpan Sun , Dan Wang, Yongan Wei, Yichun Liu: Multi-heterojunction photocatalysts based on WO3nanorods: Structural, design and optimization for enhanced photocatalytic activity under visible light, Chem. Eng. J., 237, 29-37(2014).

https://doi.org/10.1016/j.cej.2013.10.003

Cholsong Pang, Ji Luo, ZhimengGuo, Min Guo, Ting Hou, Inhibition of tungsten particle growth during reduction of V-doped WO3 nanoparticles prepared by co-precipitation method, Int. J. Refract. Met. H., 28, 343–348(2010).

Danine, A., Cojocaru, L., Faure, C., Olivier, C., Toupance, T., Campet, G. and Rougier, A., Room Temperature UV treated WO3 thin films for electrochromic devices on paper substrate, Electrochim. Acta., 129, 113-119(2014).

https://doi.org/10.1016/j.electacta.2014.02.028

El-Nahass, M. M., Ali, H. A. M.,Saadeldin, M. and Zaghllol, M., AC conductivity and dielectric properties of bulk tungsten trioxide (WO3), Physica. B., 407(22), 4453-4457(2012).

https://doi.org/10.1016/j.physb.2012.07.043

Gartstein, Y. N. and Conwell, E. M., High-field hopping mobility in molecular systems with spatially correlated energetic disorder,Chem. Phys. Lett., 245(4-5), 351-358(1995).

https://doi.org/10.1016/0009-2614(95)01031-4

Gaury,J., Kelder, E. M., Bychkov, E. andBiskos, G., Characterization of Nb-doped WO3 thin films produced by Electrostatic Spray Deposition, Thin Solid Films, 534, 32–39(2013).

https://doi.org/10.1016/j.tsf.2013.01.080

Georg, A., Georg, A., Graf, W. and Wittwer, V., Switchable windows with tungsten oxide, Vacuum, 82(7), 730–735(2008).

https://doi.org/10.1016/j.vacuum.2007.10.020

Gupta, M. K. and Kumar, B.,Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnOnanorods, J. Alloy. Compd., 509(23), L208-L212(2011).

https://doi.org/10.1016/j.jallcom.2011.03.119

Hao Zhou, Dong-Yao Xu, Hai-Qing Zuo,Wei Liu, Shuang Lin, Preparation of Flower-Like Cu-WO3 Nanostructures and Their Acetone Gas Sensing Performance, J. Chem., 2015, 382087(2015).

https://doi.org/10.1155/2015/382087

Hubalek, J.,Malysz, K., Prasek,J., Vilanova, X., Ivanov, P.,Llobet, E.,Brezmes, J., Correig, X. andSverák, Z., Pt-loaded Al2O3 catalytic filters for screen-printed WO3 sensors highly selective to benzene, Sensor. Actuator. B., 101(3), 277–283(2004).

https://doi.org/10.1016/j.snb.2004.01.015

Hui Song, Yaguang Li, Zirui Lou, Mu Xiao, Liang Hu, Zhizhen Ye, Liping Zhu, Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities, Appl.Catal. B: Environ., 166–167, 112–120(2015).

https://doi.org/10.1016/j.apcatb.2014.11.020

Huijuan Xia, Yan Wang, Fanhong Kong, Shurong Wang, Baolin Zhu, XianzhiGuo, Jun Zhang, Yanmei Wang, Shihua Wu, Au-doped WO3-based sensor for NO2 detection at low operating temperature, Sensor. Actuator. B., 134, 133–139(2008).

https://doi.org/10.1016/j.snb.2008.04.018

Huijuan Xia, Yan Wang, Fanhong Kong, Shurong Wang, Baolin Zhu, XianzhiGuo, Jun Zhang, Yanmei Wang, Shihua Wu, Au-doped WO3-based sensor for NO2 detection at low operating temperature, Sensor. Actuator. B., 134(1), 133–139(2008).

https://doi.org/10.1016/j.snb.2008.04.018

Hutchins, M. G., Abu-Alkhair, O., El-Nahass, M. M. and Abdel-Hady, K.,Electrical conductivity and dielectric relaxation in non-crystalline films of tungsten trioxide, J. Non-Cryst.Solids., 353(44-46), 4137–4142(2007).

https://doi.org/10.1016/j.jnoncrysol.2007.06.042

Jonscher, K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983.

Kuzmin, A.,Anspoks, A.,Kalinko, A.,Kalinko, A. and Kalendarev, R., X-ray absorption spectroscopy of Cu-doped WO3 films for use in electrochemical metallization cell memory, J. Non-Cryst. Solids., 401, 87-91(2014).

https://doi.org/10.1016/j.jnoncrysol.2014.01.022

Mingshui Yao, Qiaohong Li, GuolinHou, Chen Lu, Benli Cheng, KechenWu,Gang Xu, FangliYnan, Fei Ding, Yunfa Chen,Dopant-Controlled Morphology Evolution of WO3Polyhedra Synthesized by RF Thermal Plasma and Their Sensing Properties, ACS Appl. Mater. Interfaces., 7(4), 2856–2866(2015).

https://doi.org/10.1021/am5081277

Mott, N. F. and Davis, E. A., Electronic Process in Non- Crystalline Materials, Clarendon Press, Oxford, 1972.

https://doi.org/10.1002/crat.19720070420

Reza Zamiri, Ajay Kaushal, AvitoRebelo J.M. F. Ferreira, Er doped ZnOnanoplates: Synthesis, optical and dielectric Properties, Ceram. Int., 40(1), 1635-1639(2014).

https://doi.org/10.1016/j.ceramint.2013.07.054

Shenmin Zhu, Xinye Liu, Zhixin Chen, ChunjiaoLiu,ChuanliangFeng,JiajunGu,Qinglei Liu, Di Zhang, Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors for high performance sensors, J. Mater. Chem., 20, 9126–9132 (2010).

https://doi.org/10.1039/C0JM02113J

Shumaila, G. B.,Lakshmi, V. S., Masood Alam, Azher M. Siddiqui, Zulfequar, M. and Husain, M., Synthesis and characterization of Se doped polyaniline, Curr.Appl.Phys., 11(2), 217-222(2011).

https://doi.org/10.1016/j.cap.2010.07.010

Simpson, C. andCordaro, J. F., Characterization of deep levels in zinc oxide,J. Appl. Phys., 63(5), 1781-1783(1988).

https://doi.org/10.1063/1.339919

SomayehFardindoost, AzamIrajizad, FereshtehRahimi, RoghayehGhasempour, Pd doped WO3 films prepared by sol-gel process for hydrogen sensing, Int. J. Hydrogen Energy, 35(2), 854– 860(2010).

https://doi.org/10.1016/j.ijhydene.2009.11.033

Upadhyay, B., Mishra, R. K. and Sahay, P. P.,Structural and alcohol response characteristics of Sn-doped WO3 nanosheets,Sensor. Actuator. B., 193, 19–27(2014).

https://doi.org/10.1016/j.snb.2013.11.049

Wagner, K. W.,Zurtheorie der unvollkommenendielektrika, Annalen der Physik 345(5), 817‐855(1913).

https://doi.org/10.1002/andp.19133450502

Wang X,, Song C, Geng K, Zeng F, Pan F: Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,Appl. Surf. Sci., 253, 6905–6909(2007).

https://doi.org/10.1016/j.apsusc.2007.02.013

Wang, W., Research on Surface Doped Tungsten Oxide Gas- Sensing Mechanism, Tianjin University, TanJin, China, 2011.

Wen Zeng, Chining Dong, Bin Miao, He Zhang, Sibo Xu, Xuezheng Ding and Shahid Hussain, Preparation, characterization and gas sensing properties of sub-micron porous WO3 spheres, Mater. Lett., 117, 41–44(2014).

https://doi.org/10.1016/j.matlet.2013.11.080

Zaki, H. M., AC conductivity and frequency dependence of the dielectric properties for copper doped magnetite, Physica B, 363(1-4), 232–244(2005).

https://doi.org/10.1016/j.physb.2005.03.026

Zhiyang He, Qiao Liu, HuilinHou, Fengmei Gao, Bin Tang, Weiyou Yang, Tailored Electrospinning of WO3Nanobelts as Efficient Ultraviolet Photodetectors with Photo-Dark Current Ratios up to 1000, ACS Appl. Mater. Interfaces., 7(20), 10878–10885(2015).

https://doi.org/10.1021/acsami.5b02020

Contact Us

Powered by

Powered by OJS