Open Access

Application of Box Behnken design to optimize the reaction conditions on the synthesis of Multiwalled Carbon Nanotubes

V.S. Angulakshmi, angulakshmiprabu@gmail.com
Department of Chemistry, Kathir college of Engineering, Coimbatore, TN, India.
S. Mageswari, Department of Chemistry, Vivekanandha College of Engineering for women, Thiruchengode, TN, India S. Kalaiselvan, Department of Chemistry, SNS college of Technology, Coimbatore, TN, India S. Karthikeyan Department of Chemistry, Chikkanna Government Arts College, Tiruppur, TN, India.


J. Environ. Nanotechnol., Volume 7, No 1 (2018) pp. 30-36

https://doi.org/10.13074/jent.2018.03.181297

PDF


Abstract

This paper describes the use of Box Behnken design approach to plan the experiments for turning the yield of Multiwalled Carbon nanotubes (MWCNTs) synthesis by spray pyrolysis method using Citrus limonum oil as carbon precursor and Fe/Co supported on silica as catalyst. Reaction temperature, composition of catalyst and feed rate of precursor were the chosen parameters to optimize the process. A total of 17 runs were required to achieve the optimum conditions. Characterization of as grown CNTs were done by scanning electron microscopy, Transmission electron microscopy and Raman Spectroscopy. This work resulted in identifying the optimized set of turning parameters for spray pyrolysis to achieve high yield of CNTs.

Full Text

Reference


Angulakshmi,V. S., Rajasekar, K., Sathishkumar, C., Karthikeyan, S., Growth of vertically aligned carbon nanotubes on a silicon substrate by a spray pyrolysis method. New Carbon Mater., 28(4), 284-287 (2013).

https://dx.doi.org/10.1016/j.carbon.2013.07.075

Brattas, A., Nanoelectronics: Spin surprise in carbon, Nature, 452(7186), 419-420 (2008).

https://dx.doi.org/10.1038/452419a

Dillon, A. C., Jones, K. M., Beddedhl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J. Storage of hydrogen in single-walled carbon nanotubes, Nature, 386(6623), 377-379 (1997).

https://dx.doi.org/10.1038/386377a0

Ghosh, P., Afre, R. A., Soga, T. and Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett., 61(17), 3768-3770 (2007).

https://dx.doi.org/10.1016/j.matlet.2006.12.030

Ghosh. P., Soga, T., Rakesh, A., Afre and Jimbo, T., Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil, J. Alloys Compd., 462(1-2), 289-293 (2008).

https://dx.doi.org/10.1016/j.jallcom.2007.08.027

Goh, T. N., A Pragmatic approach to experimental design in industry, J. Appl. Stat., 28 (3), 391-398 (2001).

https://dx.doi.org/10.1080/02664760120034126

Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. and Smalley, R. E., Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phy. Lett., 243(1-2), 49-54 (1995).

https://dx.doi.org/10.1016/0009-2614(95)00825-O

Iijima, S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58 (1991).

https://dx.doi.org/10.1038/354056a0

Karthikeyan, S., Kalaiselvan, S., Manorangitham, D. and Maragathamani, D., Morphology and structural studies of multi-walled carbon nanotubes by spray pyrolysis using Madhuca longifolia oil, J. Environ. Nanotechnol., 2(4), 15-20 (2013).

https://dx.doi.org/10.13074/jent.2013.12.132040.

Kalaiselvan. S., Gopal, K. and Karthikeyan. S., Synthesis and characterization of multiwalled carbon nanotubes using Brassica juncea oil as carbon source, Carbon science and technology, 8(1), 25-31 (2016).

Kalaiselvan, S., Jothivenkatachallam, K and Karthikeyan. S., The Effect of Catalyst composition on the Growth of Multi-walled Carbon nanotubes from Methyl esters of Oryza sativa oil, J. Environ. Nanotechnol., 5(1), 33-38 (2016).

https://dx.doi.org/10.13074/jent.2016.03.161181

Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Renewable precursor based MWCNTs synthesized by spray pyrolysis method for DSSC application, Silicon-Springer (2016).

https://dx.doi.org/10.1007/s12633-016-9419-7

Karthikeyan, S. and Mahalingam, P., Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine oil at different temperatures, Int. J. Nanotechnol. Appl., 4(3), 189-197 (2010).

Kumar. M., Okazaki, T., Hiramatsu, M. and Ando. Y., The use of camphor-grown carbon nanotube array as an efficient field emitter, Carbon, 45 (9), 1899-1904 (2007).

https://dx.doi.org/10.1016/j.carbon.2007.04.023

Kumar, M. and Ando, Y., Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support, Carbon, 43(3), 533-540 (2005).

https://dx.doi.org/10.1016/j.carbon.2004.10.014

Langer, L., Bayot, V., Grivei, E., Issi, J.-P., Heremans, J. P., Olk, C. H., Quantum transport in a multiwalled carbon nanotubes, Phys. Rev. Lett., 76(3), 479–482 (1996).

https://dx.doi.org/10.1103/PhysRevLett.76.479

Li, W. Z., Wen, J. G. and Ren, Z. F., Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition, Appl. Phys. A, 74, 397-402 (2002).

https://dx.doi.org/10.1007/s003390201284

Liu, W. W., Aziz, A., Chai, S. P., Mohamed, A. R. and Tye, C. T., Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, Can. J. Chem. Eng., 90(2), 489-505 (2012).

https://dx.doi.org/10.1002/cjce.20561

Mageswari. S., Kalaiselvan. S., Syed Shabudeen. P. S., Sivakumar. N. and Karthikeyan. S. Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal. Mater. Sci-Poland, 32(4), 709-718 (2014).

https://dx.doi.org/10.2478/s13536-014-0235-8

Nourbakhsh, A., Ganjipour, B., Zahedifar M. and Arzi, E., Morphology Optimization of CCVD-Synthesized multiwall carbon nanotubes, using statistical design of experiments, Nanotechnol., 18(11), 01-07 (2007).

Oh, J., Yoo, S., Chang, Y. W., Lim, K. and Yoo, K. H., Carbon nanotube-based biosensor for detection hepatitis B. Curr. Appl. Phys., 9(4), 229-231 (2009).

https://dx.doi.org/10.1016/j.cap.2009.06.045

Pan, D., Chen, J., Tao, W., Nie, L. and Yao, S., Polyoxometalate-Modified carbon nanotubes: New catalyst support for methanol Electro-oxidation, Langmuir, 22(13), 5872-5876 (2006).

https://dx.doi.org/10.1021/la053171w

Rakesh A. Afre, Soga. T., Jimbo, T., Mukul kumar, Ando, Y., Sharon, M., Prakash, R., Somani and Umeno, M., Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microporous Mesoporous Mater., 96(1-3), 184-190 (2006).

https://dx.doi.org/10.1016/j.micromeso.2006.06.03

Song, X., Liu, Y. and Zhu, J., Multi-walled carbon nanotubes produced by hydrogen DC arc discharge at elevated environment temperature, Mater. Lett., 61(2), 389-391 (2007).

https://dx.doi.org/10.1016/j.matlet.2006.04.068

Suzuki, K., Yamaguchi, M., Kumagai, M. and Yanagida. S., Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chem. Lett., 32(1), 28-29 (2003).

https://dx.doi.org/10.1016/j.elecom.2006.10.028

Suriani, A. B., Azira, A. A., Nik, S. F., Md Nor and Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett., 63, 2704-2706 (2009).

Yoon, B. J., Hong, E. H., Jee, S. E, Yoon, D. M., Shim, D. S., Son, G. Y., Lee, Y. J., Lee, K. H., Kim, H. S. and Park, C. G., Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate, J. Am. Chem. Soc., 127(23), 8234-8235 (2005).

https://dx.doi.org/10.1021/ja043823n

Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84(24), 5552–5555 (2000).

https://dx.doi.org/10.1103/PhysRevLett.84.5552

Contact Us

Powered by

Powered by OJS