Open Access

Photocatalytic Activity of PVA Modified TiO2 Nanoparticles

K. Balachandran, balanano06@gmail.com
Department of Chemistry, Vivekanandha College of Engineering for Women, Tiruchengode, TN, India.
R. Mariappan, Department of Physics, Adhiyamaan College of Engineering, Hosur, TN, India. S. Vijayan Department of Physics, M. G. R. Arts & Science College, Hosur, TN, India.


J. Environ. Nanotechnol., Volume 7, No 1 (2018) pp. 01-11

https://doi.org/10.13074/jent.2018.03.181295

PDF


Abstract

A novel, less time consuming and cost ineffective Wet chemical technique (WCT) was used to synthesis polyvinyl alcohol (PVA) modified TiO2 nanoparticles at relatively low temperature, in acidic pH, using Titanium tetra isopropoxide (TTIP) as a precursor. The synthesized nanoparticles were characterized by XRD, SEM-EDAX, TEM, FTIR and Uv-Visible spectroscopy. The results shows that increasing PVA concentration reduces the particle size from 17 nm to 10 nm and increase the surface area from 54 to 65 m2/g. The Uv-Visible spectra shows that blue shift was observed in all nanoparticles, which indicates PVA have capability to control the particle size. The TEM images revealed that all the particles were in nanometer size. The synthesized nanoparticles shows good photocatalytic activity and it decompose textile dye isolan blue (IB) in 5 hr reaction.

Full Text

Reference


Akpan, U. G. and Hameed, B. H., Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater., 170(2-3), 520-529 (2009).

https://dx.doi.org/10.1016/j.jhazmat.2009.05.039

Bao, J., Cai, Y., Sun, M., Wang, G. and Corke, H., Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties a nd stability, J. Agric. Food Chem., 53(6), 2327-2332 (2005).

https://dx.doi.org/10.1021/jf048312z

Beydoun, D., Amal, R., Low, G. and McEvoy, S., Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1(1), 439–458 (1999).

https://dx.doi.org/10.1023/A:1010044830871

Concalves, M. S. T., Oliveira-Campos, A. M. F., Pinto, E. M. M. S., Plasencia, P. M. S. and Queiroz, M. J. R. P. Q., Photochemical treatment of solutions of azo dyes containing TiO2, Chemosphere, 39(5), 781-786 (1991).

https://dx.doi.org/10.1016/S0045-6535(99)00013-2

Dewi, T., Rini, S., Musti, K. and Widuri, Modification of TiO2 Nanoparticle with PEG and SiO2 for anti-fogging and self-cleaning application, Int. J. Engg. Technol., 11(73), 80-85 (2011).

Dong, J., Yao, X., Bo, H., Dong, W. and Yuhan, S., A Simple non-aqueous route to anatase TiO2, Eur. J. Inorg. Chem., 8, 1236–1240 (2008).

https://dx.doi.org/10.1002/ejic.200700650

Fox, M. A. and Dulay, M. T., Heterogeneous photocatalysis, Chem. Rev., 93(1), 341–357 (1993).

https://dx.doi.org/10.1021/cr00017a016

Fox, M. A. and Dulay, M. T., Heterogeneous photocatalysis, Chem. Rev., 93(1), 341-357 (1993).

https://dx.doi.org/10.1021/cr00017a016

Fujishima, A., Rao, T. N. and Tryk, D. A., Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1(1), 01-21 (2000).

https://dx.doi.org/10.1016/S1389-5567(00)00002-2

Garbassi, F. and Balducci, L., Preparation and characterization of spherical TiO2–SiO2 particles, Micropor. Mesopor. Mater., 47(1), 51-59 (2001).

https://dx.doi.org/10.1016/S1387-1811(01)00302-X

Gomez, R., Lopez, T., Ortiz-Islas, E., Navarrete, J., Sanchez, E., Tzompanztzi, F. and Bokhimi, X., Effect of sulfation on the photoactivity of TiO2 sol–gel derived catalysts, J. Mol. Catal. A: Chem., 193(1-2), 217–226 (2003).

https://dx.doi.org/10.1016/S1381-1169(02)00473-9

Herrmann, J. M., Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today., 53(1), 115-129 (1999).

https://dx.doi.org/10.1016/S0920-5861(99)00107-8

Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., Elemental applications of semiconductor photocatalysis, Chem. Rev., 95(1), 69-96 (1995).

https://dx.doi.org/10.1021/cr00033a004

Hsuan-Fu, Y. and W. Shenq-Min, Effects of water content and pH on gel-derived TiO2-SiO2, J. Non-Cryst. Sol., 261(1-3), 260-267 (2000).

https://dx.doi.org/10.1016/S0022-3093(99)00658-4

Hua, L., Guang, Y., Aiping, C., Yuhua, L. and Peixiang, L., Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates, Thin Solid Films, 517, 745–749 (2008).

https://dx.doi.org/10.1016/j.tsf.2008.08.179

Hussain, M., Ceccarelli, R., Marchisio, D. L., Fino, D., Russo, N. and Geobaldo, F., Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles, Chem. Eng. J., 157(1), 45–51 (2010).

https://dx.doi.org/10.1016/j.cej.2009.10.043

Khanna, P. K., Singh, N. and Shobhit, C., Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA, Mat. Lett., 61(25), 4725 - 4730 (2007).

https://dx.doi.org/10.1016/j.matlet.2007.03.064

Kim, D. S., Park, Y. S., Photocatalytic decolorization of Rhodamine B by immobilized TiO2 onto silicone sealant, Chem. Eng. J., 116(2), 133–137 (2006).

https://dx.doi.org/10.1016/j.cej.2005.10.013

Konstantinou, I. K. and Albanis, T. A., TiO2-Assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations—A review, Appl. Catal. B: Environ., 49(1), 01–14 (2004).

https://dx.doi.org/10.1016/j.apcatb.2003.11.010

Kumar, K. N. P., Jalajakumari, K. and Keizer, K., Effect of peptization on densification and phase-transformation behavior of sol-gel-derived nanostructured Titania, J. Am. Ceram. Soc., 77(5), 1396-1400 (1994).

https://dx.doi.org/10.1111/j.1151-2916.1994.tb05426.x

Mahadwad, O. K., Parikh, P. A., Jasra, R. V. and Patil, C., Photocatalytic degradation of reactive black-5 dye using TiO2 impregnated ZSM-5, Bull. Mater. Sci., 34(3), 551–556 (2011).

https://dx.doi.org/10.1007/s12034-011-0124-2

Malladi, S., Mallikarjunagouda, B. P., Ravindra, S. V., Sangamesh, A. P. and Tejraj, M. A., Novel dense poly (vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30 °C, J. Mem. Sci., 281(1-2), 95-102 (2006).

https://dx.doi.org/10.1016/j.memsci.2006.03.022

Mengyue, Z., Shifu, C. and Yaowu, T., Photocatalytic degradation of organophosphorus pesticides using thin films of TiO2, J. Chem. Tech. Biotechnol., 64, 339–344 (1995).

https://dx.doi.org/10.1002/jctb.280640405

Music, S., Gotic, M., Ivanda, M., Popovic, S., Turkovic, A., Trojko, R., Sekulic, A. and Furic, K., Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure, Mater. Sci. Eng. B, 47(1), 33-40 (1997).

https://dx.doi.org/10.1016/S0921-5107(96)02041-7

Nguyen, V-C. and Nguyen, T-V., Photocatalytic removal of phenol under natural sunlight over N-TiO2-SiO2 catalyst: The effect of nitrogen composition in TiO2-SiO2, Environment Asia, 2(1), 23-29 (2009).

https://dx.doi.org/10.14456/ea.2009.4

Selvaraj, A., Parimiladevi, R., Rajesh K.B., Synthesis of nitrogen doped titanium dioxide (TiO2) and its photocatalytic performance for the degradation of Indigo Carmine Dye, J. Environ. Nanotechnol., 2(1), 35-41 (2013).

https://dx.doi.org/10.13074/jent.2013.02.121026

Shankar, V., Gessesse, M., Obare, S. O. and Ramakrishna, G., Dynamics and two-photon absorption properties of chromophore functionalized semiconductor nanoparticles, Proc. of SPIE 7413, 741309-741401 (2009).

https://dx.doi.org/10.1117/12.829276

Sushil Kumar Kansal, Swati Sood, Ahmad Umar and Mehta, S. K., Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles, J. Alloys Compd., 581, 392–397 (2013).

https://dx.doi.org/10.1016/j.jallcom.2013.07.069

Tang, W. Z. and An, H., UV/TiO2 Photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere, 31(9), 4157–4170 (1995).

https://dx.doi.org/10.1016/0045-6535(95)80015-D

Vilma, C. C., Lameiras, F. Sansviero, T. M. C., Simoes, A. B. and Vasconcelos, W. L., Preparation of CdS-containing silica–titania composites by the sol–gel process, J. Non-Cryst. Solids., 348, 190–194 (2004).

https://dx.doi.org/10.1016/j.jnoncrysol.2004.08.167

Wang, D., Song, C., Lin, Y. and Hu, Z., Preparation and characterization of TiO2 hollow spheres, Mater. Lett., 60(1), 77-80 (2006).

https://dx.doi.org/10.1016/j.matlet.2005.07.076

Yusuf, M. M., Imai, H. and Hirashima, H., Preparation of porous titania film by modified sol-gel method and its application to photocatalyst, J. Sol-Gel Sci. Tech., 25, 65-74 (2002).

https://dx.doi.org/10.1023/A:1016045111857

Zhang, X. and Zheng, H., Synthesis of TiO2-doped SiO2 composite films and its applications, Bull. Mater. Sci., 31(5), 787–790 (2008).

https://dx.doi.org/10.1007/s12034-008-0125-y

Contact Us

Powered by

Powered by OJS