Open Access

Modelling of 200 MHz Surface Acoustic Wave (SAW) Delay Line for Sensor Specific Applications

R. Jayamani,
Department of Physics, Gobi Arts and Science College, Gobi, Tamilnadu-638453.
R. Banu Priya Department of Physics, Gobi Arts and Science College, Gobi, Tamilnadu-638453.


J. Environ. Nanotechnol., Volume 6, No 3 (2017) pp. 68-72

https://doi.org/10.13074/jent.2017.09.173281

PDF


Abstract

Currently, Surface Acoustic Wave(SAW) devices and themselves in many common commercial applications like consumer electronics and telecommunications, where their ability to generate, condition and process radiofrequency (RF) signals is employed to manufacture on a large scale, devices like delay lines, bandpass alters, resonators, convolvers, radar pulse compression. alters, sensors, etc. This paper reports on the comparison of three methods of modelling SAW’s. The three models are Impulse Response Model (IRM), Crossed-field Equivalent Circuit Model (ECM) and Coupling of Modes Model (COM). The results were used to calculate the insertion loss and bandwidth of SAW delay line using 50 finger pairs operating at a centre frequency of 200MHz. The modelling study was carried out using MATLAB® as a simulation tool. The results show that the SAW designs based on three models are adequate for sensor applications.

Full Text

Reference


Andle. J.C, Vetelino.J.F, IEEE Ultrosonics symposium 471-474(1994).

Banu priya, R., Venkatesan, T., Pandiyarajan, G. and Haresh M.P., SAW devices-a comprehensive review, J. Environ. Nanotechnol., 3(3), 106-115(2014).

doi: 10.13074/jent.2014.09.143101.

Banupriya, R., Venkatesan, T., Haresh M.Pandya., A Comparison of Surface Acoustic Wave (SAW)  Delay Line Modelling Techniques for Sensor Application, J. Environ.Nanotechnol., 5(2), 42-47(2016).

doi:10.13074/jent.2016.06.162193.

Cavic. B.A, Hayward. G.I, Thompson. M, The Analyst, pp. 1405–1420, (1999).

Gardner, J. W., Varadan, V. K. and Awadelkarim, O. O., Microsensors MEMS smart devices, John Wiley & sons Ltd., England (2002).

Hartmann C. S. Bell D. T., Jr., and Rosenfeld R. C., Impulse Model Design of Acoustic Surface Wave Filters, IEEE Transactions on Microwave Theory and Techniques, 21, 162-175(1973).

doi:10.1109/TMTT.1973.1127967.

Haresh, M.  P., Sharma, M.  U., Nimal, A.  T.  and Rajesh, K.  B., Impulse modelled response of a 300 mhz st-quartz saw device for sensor specific applications, J.  Environ.  Nanotechnol., 2, 15–21(2013).

doi: 10.13074/jent.2013.02.nciset33

Haus, H. A., Modes in SAW Grating Resonators, Journal of Applied Physics, 48(12), 4955-4961(1977).

doi:10.1049/el:19770009.

Haus, H. A., Bulk Scattering Loss of SAW Grating Cascades, IEEE Transactions on Sonics and Ultrasonics, 24(4), 259-267(1977).

doi:10.1109/T-SU.1977.30941.

Haus H. A., and Huang, W., Coupled-Mode Theory, Proceedings of IEEE,  79(10), 1505-1518(1991).

doi:10.1109/5.104225.

Joshi, S. G. , and Sudhakar, P., Scattering parameters of inter digital surface acoustic wave transducers, IEEE Trans. Sonics and Ultrasonics, 24, 201-206(1977).

doi:10.1109/T.SU.1977.30929.

Kogelnik, H., Coupled wave theory for thick hologram gratings, Bell System Technical Journal, 48(9), 2909-2947(1969).

doi:10.1002/j.1538-7305.1969.tb01198.x.

Morgan, D., surface acoustic wave filters with applications to electronic communications and signal processing, Elsevier, UK (2007).

Pierce, J.R., Coupling of modes of propagation, J. Appl. Phy., 25(2), 179-183(1954).

doi:10.1063/1.1721599.

Priya, R.  B., Venkatesan, T., Pandiyarajan, G.  and Pandya, H. M., A short review of saw sensors, J. Environ. Nanotechnol., 4(4), 15–22(2015).

doi:10.13074/jent.2015.12.154171

Raj, V.  B., Singh, H., Nimal, A.  T., Sharma, M.  U. and Gupta, V., Oxide thin films (ZnO, TeO2, SnO2 and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sens. Actuat. B Chem., 178, 636–647(2013).

doi:10.1016/j.snb.2012.12.074 

Royer, D., and Dieulesaint, E., elastic waves in solids II –Generation, acoustic- optic Interaction, applications, Springer-Verlag, New york(1999).

Ruppel, C. CW., and Fieldly, T. A., Advances in surface acoustic wave technology, systems and applications (vol. 1), world scientific publishing Co.Pte.Lid., Singapore (2000).Sonics and Ultrasonics,  24(4), 259-267(1977).

Sharma, M. U., Kumar, D., Koul, S. K., Venkatesan, T., Pandiyarajan, G., Nimal, A. T., Kumar, P. R. and Pandya, H. M., Modelling of saw devices for gas sensing applications –a comparison, J. Environ. Nanotechnol., 3(4), 63–66(2014).

doi:10.13074/jent.2014.12.144110

Venkatesan, T. and Pandya, H., Surface acoustic wave devices and sensors -  a short review on design and modelling by impulse response, J. Environ. Nanotechnol., 2(3), 81–89(2013).

doi:10.13074/jent.2013.09.132034

Venkatesan, T., Priya, R.  B., Pandiyarajan, G.  and Pandya, H.  M., Idealized P-matrix basedmodelling and computational analysis of saw delay lines for improved performance in sensors, J. Environ. Nanotechnol., 4(4), 56–61(2015).

doi:10.13074/jent.2015.12.154170

Yariv, A. Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, 9(9), 919-933(1973).

doi:10.1109/JQE.1973.1077767.

Contact Us

Powered by

Powered by OJS