Open Access

A Novel Synthesis of SWCNTs from Tapioca for Opto-Electronic Devices: 3D - High Efficiency Solar Cells, Flat Panel Displays, Leds & Lasers, Magnetic Storage Devices: High Capacity Pen Drives and Nano Thermometers - A New Feasibility Study

I. Manimaran, Arignar Anna Government Arts College, Attur, TN, India. K. Ramamoorthy
Government Arts and Science College, Komarapalayam, TN, India.


J. Environ. Nanotechnol., Volume 6, No 3 (2017) pp. 34-44

https://doi.org/10.13074/jent.2017.09.173274

PDF


Abstract

A novel modified AC method - VSA methodology (with KRS or NTFDS theory) was adopted in this present work for the preparation of SWCNTs from natural organics i.e., Tapioca leaves towards the possiblility of application to Opto-electronic devices : 3D - high efficiency Solar cells, Flat panel displays, LEDs & Lasers, Magnetic storage devices and Nano thermometers. Structural, Compositional, Surface Morphological and Nano structural Characterizations were carried out on harvested products. The effects of optimizations parameters like pH of the various dipping solutions (acidic, basic and neutral), volume of dipping solutions, various types and parts of the materials, various dipping timings, number of annealing and dipping, various annealing temperature, various time of annealing and various dipping solution temperatures on structural, compositional, surface morphological, nano-structural characterizations of materials and on high grade SWCNTs growth with high yield were studied intensively. Inferences from characterizations were derived and graphically emphasized. Correlation studies between these characterization inferences (such as grain size, purity) and above optimization parameters were carried out with a high light on yield of high grade SWCNTs. Beyond all of these, we have carried out a new feasibility study at first time, which comprises the possible usage of precursor organic carbon source i.e., Tapioca leaves for high grade SWCNTs with high yield via a low cost technique and methodology as value in commercial efforts.

Full Text

Reference


Ajayan, P. M. and Iijima, S., Capillarity-induced filling of carbon nanotubes, Nature,               361, 333-334(1993).

doi:10.1038/361333a0

Ajayan, P. M. and T. W. Ebbesen, Nanometre size tubes of carbon, Rep. Prog. Phys., 60(10), 1025-1062(1997).

doi:10.1088/0034-4885/60/10/001

Bellucci, S., et al, AFM Characterizations of CNTs, Journal.Phy.Conf.Series 61(2007) 99-104

Bond, J., Lefebvre, J., Austing, D. G. and Finnie, P., CVD of SWCNTs freely suspended over NT supports,  Nanotechnology, 18(13), 135603(2007).

doi: 10.1088/0957-4484/18/13/135603 

alvert,  P.,Nature 399,210 (1999) 409

Cees Dekker, Carbon nanotubes as molecular quantum wires, Phys. Today, 22-28(1999) 391

Chiu, P. W., Duesberg, G. S., Weglikowska, U. D. and Roth, S., Interconnection of CNTs by chemical functionalization, Appl. Phy. Lett.,   80(20), 3811- (2002).

doi: 10.1063/1.1480487

Chun Li, Guojia Fang, Longyan Yuan, Nishuang Liu, Lei Ai, Qi Xiang, Dongshan Zhao, Chunxu Pan and Xingzhong Zhao, Field emission from carbon nanotube bundle arrays grown on self - aligned ZnO nanorods, Nanotechnology, 18(15), 155702(2007).

doi:10.1088/0957-4484/18/15/155702

Collins, P. and Zettl, A., Appl.Phy.Lett, 69 (1996) 396

Dean, K. A. and Chalamala, B. R., Field emission microscopy of carbon nanotube caps, J.Appl.Phys 85(7) (1999) 396.

doi:10.1063/1.369753

Dresselhaus, M. S., Science of Fullerenes and Carbon nanotubes, Academic Press, New York, 965(1996).

Dresselhaus, M. S., Williams, K. A. and Eklund, P. C., MRS Bull, 24,11,45 (1999) 404

Dujardin, E., Ebbesen, T. W., Hiura, T. and Tanigaki, K., Capillarity and wetting of carbon nanotubes, Science 265(5180), 1850-1850(1994).

Ebbesen, T. W., Carbon nanotubes: Preparation and properties, CRC Press, Boca Raton,    391.(1997).

Guoyong Xu, Wei-Tai Wu, Yusong Wang, Wenmin Pang, Qingren Zhu and Pinghua Wang, Functionalised CNTs with polystyrene-block-poly (N-isopropylacrylamide) by in-situ RAFT        Poymerization, Nanotechnology, 18(14), 145606(2007).

doi:10.1088/0957-4484/18/14/145606

Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter,  Nature, 363, 603-606(1993).

doi:10.1038/363603a0

Iijima, S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58(1991).

doi:10.1038/354056a0

Kuromochi, H., Tokizaki, T., Yokoyama, H. and Dagata, J. A., Why nano-oxidation with CNT probes is so stable : I.Linkage   between hydrophobicity and stability, Nanotechnology, 18(13), 135703(2007).

doi:10.1088/0957-4484/18/13/135703

Majumder  M, et al., Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,   nature 383 (2005)  438-444

Mattia, D., Korneva, G., Sabur, A., Friedman, G. and Y.Gogotsi, Multifunctional CNT with nanoparticles embedded in their walls, Nanotechnology, 18(15), 155305 (2007).

doi:10.1088/0957-4484/18/15/155305

Rossi, M. P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P. and Bradley, J. C., Environmental SEM study of water in carbon nanopipes, Nano Lett., 4(5), 989-993(2004).

doi:10.1021/nl049688u

Rostam Moradian and Ali Fathalian, Ferromagnetic semiconductor single wall CNTs, Nanotechnology, 17(8), 1835-1842(2006).

doi:10.1088/0957-4484/17/8/005

Safarova, K., Dvorak, A., Kubinek, R., Vujtek, M.  and Rek, A., Usage of AFM, SEM, TEM for the research of CNTs, Mod. Res. Edu. Topics Micro., 513-519(2007).

Shaoping Xiao and Wenyi Hou, Studies of Size effects on CNTs : mechanical properties  by using differential potential functions, Fullerenes, nanotubes and carbon nanostructures, 14(1),  09-16(2006).

doi:10.1080/15363830500538425

Shiren Wang, Zhiyong Liang, Tina Liu and Chun (Chuck) Zhang, Effective amino - functionalization of CNTs for Reinforcing epoxy polymer composites, Nanotechnology, 17(6),  1551-1557(2006).

doi: 10.1088/0957-4484/17/6/003

Teh-Hwa Wong et al., Nanosecond Laser pulse - induced electron emission from MWCNTs films, Nanotechnology, 18  135705(2007).

doi:10.1088/0957-4484/18/13/135705

Wang, Y., Iqbal, Z. and Malhotra, S. V.,  Functionalization of CNTs with amines and enzymes, Chem.Phys.Lett  402(1-3), 96-101(2005).

doi:10.1016/j.cplett.2004.11.099

Wang. S., Liang, Z., Wang, Ben. and Zhang, C., Statistical characterization of SWCNTs length distribution, Nanotechnology, 17(3), 634-639(2006).

doi: 10.1088/0957-4484/17/3/003

Winter, M., Besenhard, J., Spahr, K. and Novak, P., Adv.Mater.10,725 (1998) 402

Xue, Q. Z., Model for the effective thermal conductivity of CNT Composites,  Nanotechnology, 17(6), 1655-1660(2006).

doi:10.1088/0957-4484/17/6/020

Yakobson, B. I. and Smalley, R. E.,  Fullerence Nanotubes: C1,000,000 and Beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties – have joined diamonds and graphite in the carbon family, American Scientist, 85(4), 324-337(1997).

Zhenhui Kang et al., Obtaining CNTs from grass,Nanotechnology,16 (2005) 1192-1195.

Zhiyang Rong, Fabrication and characterization of CNTs for bio-medical applications, M.Sc Thesis,Aug., 01-83(2008).

Contact Us

Powered by

Powered by OJS