Growth of High Grade SWCNTs from Gr (a) Grass for Nano Drug Delivery System-A New Modified Feasibility Study
J. Environ. Nanotechnol., Volume 6, No 3 (2017) pp. 01-08
Abstract
As a eco-friendly green carbon product liable to fuse inside the human body, biotechnologists and pathologists suggested and put forth a strong message that CNTs may be used as a nano capsule which carries drug towards cancer treatment. Modified AC method - VSA methodology (with KRS or NTFDS theory) was novely adopted in this present work for the preparation of CNTs from natural organics i.e., Gr (a) grass towards the possibility of application to nano drug delivery system. Structural, Compositional, Surface Morphological and Nano structural Characterizations were carried out on harvested products. The effects of optimizations parameters like pH of the various dipping solutions (acidic, basic and neutral), volume of dipping solutions, various types and parts of the materials, various dipping timings, number of annealing and dipping, various annealing temperature, various time of annealing and various dipping solution temperatures on structural, compositional, surface morphological, nano-structural characterizations of materials and on high grade SWCNTs growth with high yield were studied intensively. Inferences from characterizations were derived and graphically emphasized. Correlation studies between these characterization inferences (such as grain size, purity) and above optimization parameters were carried out with a high light on yield of high grade SWCNTs. Beyond all of these, we have carried out a new feasibility study at first time, which comprises the possible usage of precursor organic carbon sources for high grade SWCNTs with high yield via a low cost technique and methodology as value in commercial efforts.
Full Text
Reference
Ajayan, P. M. and Lijima, S., Capillarity-induced filling of carbon nanotubes, Nature, 361, 333-334(1993).
doi:10.1038/361333a0
Ajayan, P. M. and T. W. Ebbesen, Nanometre size tubes of carbon, Rep. Prog. Phys., 60(10), 1025-1062(1997).
doi:10.1088/0034-4885/60/10/001
Anton, A. H. and Sayre, D. F., A study of the factors affecting the aluminium oxide-trihydrosyindole procedure for the analysis of catecholamines, J. Pharmacol. Exp. Ther., 138, 360-375(1962).
Chik, H. and Xu, J. M., Nanometric superlattices: non-lithographic fabrication, materials and prospects, Mater. Sci. Eng. R Rep., 43, 103-138(2004).
doi:10.1016/j.mser.2003.12.001
Clark, L. C. and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29-45(1962).
doi: 10.1111/j.1749-6632.1962.tb13623.x
Crouse, D., Lo, Y., Miller, A. E. and Crouse, M., Self – ordered pore structure of anodized aluminium on silicon and pattern transfer, Appl. Phys. Lett. 2000, 76, 49-51.
doi:10.1063/1.125652
Degani, Y. and Heller, A., Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme, J. Phys. Chem., 91(6), 1285-1289(1987).
doi: 10.1021/j100290a001
Ge, M. and Sattler, K., Scanning tunneling microscopy of single-shell nanotubes of carbon, Appl. Phys. Lett. 1994, 65(18), 2284-6.
doi:10.1063/1.112719
Gouveia-Caridade, C., Pauliukaite, R., Brett, C. M. A., Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol, Electrochim. Acta, 53(23), 6732-6739(2008).
doi:10.1016/j.electacta.2008.01.040
Hou, S., Wang, J. and Martin, C. R., Template-Synthesized protein nanotubes, Nano Lett., 5(2), 231-234(2005)
doi: 10.1021/nl048305p.
Jessensky, O., Müller, F. and Gösele, U., Self-Organized formation of hexagonal pore structures in anodic alumina, J. Electrochem. Soc. 1998, 145(11), 3735-3740(1998).
doi: 10.1149/1.1838867
Kyotani, T., Tsai, L. and Tomita, A., Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminium oxide film, Chem. Mater., 8(8), 2109-2113(1996).
doi: 10.1021/cm960063+
Li, A. P., Müller, F., Birner, A., Nielsch, K. and Gösele, U., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023-6026(1998).
doi:10.1063/1.368911
Li, J., Wang, Y. B, Qiu, J. D., Sun, D. C. and Xia, X. H., Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor Anal. Bioanal. Chem., 383(6), 918-922(2005).
doi:0.1007/s00216-005-0106-6
Liang, J., Chik, H. and Xu, J., Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications IEEE J Quantum Electron., 8(5), 998-1008(2002).
doi:10.1109/JSTQE.2002.804238
Liang, J., Chik, H., Yin, A. and Xu, J., Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template, J. Appl. Phys., 91, 2544-2546(2002).
doi:10.1063/1.1433173
Lijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603-605(1993).
doi:10.1038/363603a0
Lijima, S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58(1991).
doi:10.1038/354056a0
Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268(5216), 1466-1468(1995).
doi:10.1126/science.268.5216.1466
Masuda, H., Yamada, H., Satoh, M. and Asoh, H., Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett., 71, 2770-2772(1997).
doi:10.1063/1.120128
Newbury, D. E. and Williams, D. B. The electron microscope: the materials characterization to the millennium, Acta. Mater., 48(1), 323-346(2000).
doi:10.1016/S1359-6454(99)00302-X
Rao, A. M., Eklund, P. C., Bandow, S. A. and Smalley, R. E., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature, 388, 257-259(1997).
Vamvakakl, V., Tsagaraki, K. and Chanlotakls, N., Carbon nanofiber-based glucose biosensor, Anal. Chem., 78(15), 5538-5542(2006).
doi:10.1021/ac060551t
Wang, X. and Han, G., Fabrication and characterization of anodic aluminum oxide template, Microelectronic Engineering, 66(1-4), 166-170(2003).
doi:10.1016/S0167-9317(03)00042-X
Withey, G. D., Lazareck, A. I., Tzolov, M. B., Yin, A., Aich, P., Yeh, J. I. and Xu, J. M. Biosens. Bioelectron., 21(8), 1560-1565(2006).
doi:10.1016/j.bios.2005.07.014
Yuan, J. H., He, F. H., Sun, D. C. and Xia, X. H., A simple method for preparation of through-hole porous anodic alumina membrane, Chem. Mater., 16(10), 1841-1844(2004).
doi: 10.1021/cm049971u
Zhang, Z. and Lieber, C. M., Nanotube structure and electronic properties probed by scanning tunneling microscopy, Appl. Phys. Lett., 62, 2792-2794(1993).
doi:10.1063/1.109211
Zhao, S., Chan, K., Yelon, A. and Veres, T., Preperation of open-through anodized aluminium oxide films with a clean method, Nanotechnology, 18(24), 245304-245308(2007).
doi:10.1088/0957-4484/18/24/245304
Zhenhui, K., Enbo, W., Baodong, M., Zhongmin, S., Lei, C and Lin, X., Obtaining carbon nanotubes from grass, Nanotechnology, 16(8), 1192-1195(2005).
doi:10.1088/0957-4484/16/8/036