Open Access

Whistler-mode chorus emissions observed at Nanital (L= 1.16)

M. Altaf, altafnig@rediffmail.com
Department of Physics, National Institute of Technology, Srinagar, Kashmir, India.
M.M. Ahmad, Department of Physics, National Institute of Technology, Srinagar, Kashmir, India. J.M. Banday Department of Civil engineering, National Institute of Technology, Srinagar, Kashmir, India.


J. Environ. Nanotechnol., Volume 2, No 3 (2013) pp. 29-35

https://doi.org/10.13074/jent.2013.09.132029

PDF


Abstract

Observations of whistler-mode chorus emissions recorded at Nanital (190 02/ N, 14.9o 45/ E, L = 1.16) between 2200 and 0315 hours IST on 13 May and 8 June 1970 has been reported. The detailed spectral analysis of recorded chorus emissions shows that the chorus element originates from upper edge of the hiss band. To explain the observed dynamic spectra of these chorus emissions, a possible generation mechanism is presented on the non linear theory. It is observed that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. On the basis of this theory, the frequency sweep rate of chorus emission is computed and compared with that of our experimentally observed values, which in general shows good agreement.

Full Text

Reference


Bortnik, J., Thorne, R.M. and Meredith, N.P., The unexpected origin of plasma spheric his from discrete chorus emissions, Nature., 452, 62 (2008).

http://dx.doi.org/10.1038/nature06741

Burtis, W.J. and Helliwell, R.A., Magnetospheric chorus: occurrence pattern and normalized frequency, Planet. Space Sci., 24, 1007 (1976).

http://dx.doi.org/10.1016/0032-0633(76)90119-7

Carpenter, D.L. and Anderson, R.R., An ISEE/ whistler model of equatorial density in the magnetosphere, J. Geophys. Res., 97, 1097 (1992).

http://dx.doi.org/10.1029/91JA01548

Chum, J., Santolik, O., Breneman, A.W., Kletzing, C.A., Gurnett, D.A. and Pickett, J.S., Chorus source properties that produce time shifts and frequency range differences observed on different cluster spacecraft, J. Geophys. Res., 112 A 06206 (2007).

http://doi: 10 1029/ 2006JA012061.

Hattori, K. and Hayakawa, M., Consideration of dynamic spectra and direction finding results of hiss-triggered chorus emissions, Proc. NIPR Symp. Upper Atmos. Phys., 7, 40 (1994).

Hattori, K., Hayakawa, M., Lagoutte, D., Parrot, M. and Lefeuvre, F., Further evidence of triggered chorus emissions from wavelet in the hiss band Planet, Space Sci., 39, 1465 (1991).

http://dx.doi.org/10.1016/0032-0633(91)90075-L

Helliwell, R., Whistlers and related ionospheric phenomena, J. Geophys. Res., 72, 4273 (1967).

Helliwell, R.A., Whistler and Related Ionospheric Phenomena (Stanford, C.A, USA: Stanford University Press) 1965.

Hikishima, M., Yagitani, S., Omura, Y. and Nagano, I., Full particle simulation of whistlermode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114 A01203 (2009). 

http://doi.1029/2008JA013625.

Katoh, Y. and Omura, Y., A study of generation mechanism of VLF triggered emissions by selfconsistent particle code, J. Geophys. Res., 111, A12207 (2006). 

http://doi: 10. 1029/2006JA011704.

Katoh, Y. and Omura, Y., Computer simulation of chorus wave generation in the earths inner magnetosphere, Geophys. Res. Lett., 34, L03102 (2007). 

http://doi: 10. 1029/2006GL028594.

Lauben, D.S., Inan, U.S., Bell, T.F. and Gurnett, D.A., Source characterizations of ELF/VLF chorus, J. Geophys Res., 107, A12 1429 (2002). 

http://doi: 10. 1029/2000JA 003019.

Lauben, D.S., Inan, U.S., Bell, T.F., Kirchner, D.L., Hospodarsky, S.B. and Pickett, J.S., VLF chorus emission observed by POLAR during the January 10, 1997 magnetic cloud, Geophys. Res. Lett., 25, 2995 (1998).

http://dx.doi.org/10.1029/98GL01425

Meredith, N.P., Horne, R.B. and Anderson, R.R., Substorm dependence on chorus amplitudes: implications for the acceleration of electrons to relativistic energies, J. Geophys Res., 106, 13165 (2001).

http://dx.doi.org/10.1029/2000JA900156

Nunn, D., A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349 (1974). 

http://dx.doi.org/10.1016/0032-0633(74)90070-1

Nunn, D., Omura, Y., Matsumoto, H., Nagano, I. and Yagitani, S., The numerical simulation of VLF chorus and discrete emissions observedon Geotail satellite using a Vlasov code, J. Geophys. Res., 102, 27083 (1997).

http://dx.doi.org/10.1029/97JA02518

Omura, Y. and Matsumoto, H., Computer simulations of basic process of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87, A6 4435 (1982).

Omura, Y. and Summers, D., Computer simulation of relativistic whistler-mode wave-particle interactions, Phys. Plasma., 11, 3530 (2004).

http://dx.doi.org/10.1063/1.1757457

Omura, Y., Furuya, N. and Summers, D., Relativistic acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236 (2007). 

http://doi. 1029/2006JA012243.

Omura, Y., Hikishima, M., Katoh, Y., Summers, D. and Yagitani, S., Nonlinear mechanisms of lower band and upper band VLF chorus emissions in the magnetosphere, J. Geophys Res., 114 A07217 (2009). 

http://doi: 10.1029/ 2009JA014206.

Omura, Y., Katoh, Y. and Summer, D., Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113 A04223 (2008). 

http://doi: 10. 1029/2007JA012622.

Patel, R.P., Singh, R.P., Singh, A.K., Gwal, A.K. and Hammar, D., Observation of very low frequency emission at Indian Antarctic station Maitri Pramana, J.Phys., 61, 4773 (2003).

Santolik, O., Gernet, D.A., Pickett, J.S., Parrot, M. and Cornilleau-Wehrlin, N., A mocroscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31 L02801 (2004). 

http://doi: 10. 1029/2003 GL018757.

Santolik, O., Gernet, D.A., Pickett, J.S., Parrot, M. and Cornilleau-Wehrlin, N., Central position of the source region of storm-time chorus planet, Space Sci., 53, 299 (2005).

Santolik, O., New results of investigations of whistle-mode chorus emissions nonlin, Process. Geophys., 15, 621 (2008).

http://dx.doi.org/10.5194/npg-15-621-2008

Santolik, O., Parrot, M. and Lefeuvre, F., Singularvalue decomposition methods for wave propagation analysis, Radio Sci., 38 1 1010 (2003). 

http://doi: 10. 1029/2000RS002523.

Sazhin, S.S. and Hayakawa, M., Magnetospheric chorus emission, Planet Space Sci., 40, 681 (1992).

http://dx.doi.org/10.1016/0032-0633(92)90009-D

Singh, A.K. and Ronnmark, K., Generation mechanism for VLF chorus emissions observed at a low-latitude ground station, Ann. Geophys., 22, 2849 (2004).

http://dx.doi.org/10.5194/angeo-22-2849-2004

Singh, A.K., Singh, S.B. and Patel, R.P., An explanation of the observation of whistlermode chorus emissions at the Indian Antarctic station, Maitri (L = 4.5), Phy. Scr. 81, 2010.

Singh, K.K., Singh, J., Patel, R.P., Singh, A.K., Singh, R.P., Singh, R. and Ganai, P.A., Quasi periodic VLF emissions observed during daytime at a low latitude Indian ground station
Jammu, J. Earth Syst. Sci., 118, 31 (2009).

Singh, R., Patel, R.P., Singh, R.P. and Lalmani., An experimental study of hiss triggered chorus emission at low latitudes, Earth Planets space., 52, 37 (2000).

Singh, R.P., Patel, R.P., Singh, A.K., Effects of solar and magnetic acyivity on VHF scintillations near the equatorial anomaly crest, Ann. Geophys., 22, 2849 (2004).

http://dx.doi.org/10.5194/angeo-22-2849-2004

Singh, S.K., Kumar, S. and Gwal, A.K., Daytime very low frequency (VLF) emissions observed at Maotri station Antarctica, Ind. J. Phys., 77, B4451 (2003).

Smirnova, N.A., Fine structure of the ground observed VLF chorus as an indicator of the wave particle interaction process in the magnetosphere, Planet. Space Sci., 32, 425 (1984).

http://dx.doi.org/10.1016/0032-0633(84)90122-3

Summers, D., Mace, R.L. and Hellberg, M.A., Pitch-angle scattering rates in planetary magnetospheres, J. Plasma Phys., 71, 3237 (2005).

Thorne, R.M., Obrien, T.P., Shprits, Y.Y., Summers, D. and Horne, R.B., Timescale for MeV electron microburst loss during geomagnetic storm, J. Geophys. Res., 110 A09202 (2005). 

http://doi: 10. 1029/2004JA010882.

Trakhtengerts, V.Y., A generation mechanism for chorus emissions, Ann. Geophys., 17, 95(1999).

Trakhtengerts, V.Y., Magnetospheric cyclotron maser: backward wave oscillator generation regime, J. Geophys. Res., 100, 17205 (1995).

http://dx.doi.org/10.1029/95JA00843

Contact Us

Powered by

Powered by OJS