Properties of Surface Plasmon Polaritons Excited by Higher-Order Radially Polarized Laser Beams
J. Environ. Nanotechnol., Volume 5, No 4 (2016) pp. 47-54
Abstract
Properties of surface Plasmon polaritons (SPPs) excited by generalized radially polarized higher-order transverse mode beam in high-numerical-aperture microscopic system is investigated theoretically based on vector diffraction theory. A variety of total field distributions such as virtual probe, flat-topped pattern, and doughnut can dynamically be obtained through properly selecting suitable transverse mode and pupil to beam ratio of different mode beams.
Full Text
Reference
Anatoly Zayats, V., Igor, I. Smolyaninov and Alexei A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep., 408, 131-314(2005).
https://doi.org/10.1016/j.physrep.2004.11.001
Bouhelier, A., Ignatovich, F., Bruyant, A., Huang, C., Colas des Francs, G., Weeber, J. C., Dereux, A. Wiederrecht, G. P. and Novotny, L., Surface plasmon interference excited by tightly focused laser beams, Opt. Lett., 32, 2535-2537(2007).
https://doi.org/10.1364/ol.32.002535
Chen, W., Abeysinghe, D. C., Nelson, R. L. and Zhan, Q., Plasmonic lens made of multiple concentric metallic rings under radially polarized light, Nano Lett., 9, 4320-4325(2009).
https://doi.org/10.1021/nl903145p
Chen, W. B. and Zhan, Q., Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam, Opt. Lett., 34(6), 722-724(2009).
https://doi.org/10.1364/ol.34.000722
Gilad, M. Lerman., Yanai, A. and Levy, U., Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light, Nano Lett., 9, 2139-2143(2009).
https://doi.org/10.1021/nl900694r
Hamazaki, J., Kawamoto, A., Morita, R. and Omasum, T., Direct production of high-power radially polarized output from a side-pumped Nd:YVO4 bounce amplifier using a photonic crystal mirror, Opt. Express, 16, 10762-10768(2008).
https://doi.org/10.1364/oe.16.010762
Hanming Guo, Xiaoyu Weng, Man Jiang, Yanhui Zhao, Guorong Sui, Qi Hu, Yang Wang and Songlin Zhuang, Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters. Opt. Express, 21,5363-5372 (2013).
https://doi.org/10.1364/oe.21.005363
Helseth, L. E., Roles of polarization, phase and amplitude in solid immersion lens systems, Opt. Commun., 191(3-6), 161-172(2001).
https://doi.org/10.1016/s0030-4018(01)01150-6
Homola, J., Sinclair S. Yee and Gauglitz, G., Surface plasmon resonance sensors: review, Sensors and Actuat. B: Chem., 54(1-2), 3-15(1999).
https://doi.org/10.1016/s0925-4005(98)00321-9
Hu, Z. J., Tan, P. S., Zhu, S. W., and Yuan, X-C., Structured light for focusing surface plasmon polaritons, Opt. Express, 18(10), 10864-10870(2010).
https://doi.org/10.1364/oe.18.010864
Kozawa, Y. and Sato, S., Focusing property of a double-ring shaped radially polarized beam, Opt. Lett., 31(6), 820-822(2006). •
https://doi.org/10.1364/ol.31.000820
Kozawa, Y. and Sato, S., Generation of a radially polarized laser beam by use of a conical Brewster prism, Opt. Lett., 30, 3063-3065(2005).
Kozawa, Y. and Sato, S., Sharper focal spot formed by higher-order radially polarized laser beams, J. Opt. Soc. Am. A., 24(6), 1793-1798(2007).
Lalithambigai, K., Saraswathi, R. C., Anbarasan, P. M., Rajesh, K. B. and Jaroszewicz, Z., Generation of multiple focal hole segments using double-ring shaped azimuthally polarized beam, J. At. Mol. Phys., 451715(2013).
https://doi.org/10.1155/2013/451715
Marcel Leutenegger, Ramachandra Rao, Rainer A. Leitgeb and Theo Lasser, Fast focus field calculations , Opt. Express, 14(23), 11277-11291(2006).
https://doi.org/10.1117/12.763188
Moh, K. J., Yuan, X. C., Bu, J., Zhu, S. W. amd Bruce Gao, Z., Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams, Opt. Express., 16(25), 20734-20741(2008).
Moser, T., Glur, H., Romano, V., Pigeon, F., Parriaux, O., Ahmed, M. A. and Graf, T., Polarization-selective grating mirrors used in the generation of radial polarization, Appl. Phys. B., 80(6), 707-713(2005).
https://doi.org/10.1007/s00340-005-1794-5
Qiwen Zhan, Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam, Opt. Lett., 31(11), 1726-1728(2006).
https://doi.org/10.1364/OL.31.001726
Quabis, S., Dorn, R., Eberler, M., Glockl, O. and Leuchs, G., Focusing light to a tighter spot, Opt. Commun., 179(1), 01-07(2000).
https://doi.org/10.1016/s0030-4018(99)00729-4
Rajesh, K.,B., Veerabagu Suresh, N., Anbarasan, P. M., Gokulakrishnan, K. and Mahadevan, G., Tight focusing of double ring shaped radially polarized beam with high NA lens axicon, Opt. Laser., Tech., 43(7), 1037-1040(2011).
https://doi.org/10.1016/j.optlastec.2010.11.009
Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proceedings of the Royal Society of London Series A, 253(1274), 358-379(1959).
https://doi.org/10.1098/rspa.1959.0200
Sheppard, C. J. R. and Choudhury, A., Annular pupils, radial polarization and super resolution, Appl. Opt., 43(22), 4322-4327(2004).
https://doi.org/10.1364/ao.43.004322
Tan, P. S., Yuan, X. C., Liu, J., Wang, Q., Mei, T., Burge, R. E. and Mu, G. G., Surface plasmon polaritons generated by optical vortex beams, Appl. Phys. Lett., 92(11), 1108(2008).
https://doi.org/10.1063/1.2890058
Tian, B. and Pu, J., Tight focusing of a double-ring-shaped, azimuthally polarized beam, Opt. Lett., 36(11), 2014-2016(2011).
https://doi.org/10.1364/ol.36.002014.
Wenjun Gu, Zhehai Zhou, Qiaofeng Tan, Surface plasmon polaritions excitation by radially polarized vortex beams, Proc. SPIE, 8202(2011).
https://doi.org/10.1117/12.904899
Xin Jin, Hao Zhang, Yuchen Xu, Xiangchao Zhang, Heyuan Zhu, Representation and focusing properties of higher-order radially polarized Laguerre– aussian beams, J. Mod. Opt., 62(8), 626-632(2015).
https://doi.org/10.1080/09500340.2014.999138
Youyi Zhuang, Yaoju Zhang, Biaofeng Ding, Taikei Suyama, Trapping rayleigh particles using highly focused higher-order radially polarized beams, Opt, Commun., 284(7), 1734-1739(2011).
https://doi.org/10.1016/j.optcom.2010.12.018
Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photonics., 1(1), 01-57(2009).
https://doi.org/10.1364/aop.1.000001
Zhang, Z., Pu, J. and Wang, X., Tightly focusing of linearly polarized vortex beams through a dielectric interface, Opt. Commun., 281(13), 3421-3426 (2008).
https://doi.org/10.1016/j.optcom.2008.03.043
Zhang, Y. and Bai, J., Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams, Opt. Express., 17(5), 3699-3706(2009).
https://doi.org/10.1364/oe.17.003698
Zhongsheng Man, Luping Du, Changjun Min, Yuquan Zhang, Chonglei Zhang, Siwei Zhu, Paul Urbach, H. and Yuan, X.-C., Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states, Appl. Phys. Lett., 105(1), 011110(2014).
https://doi.org/10.1063/1.4887824
Zhongsheng Man, Wei Shi, Yuquan Zhang, Chonglei Zhang, Changjun Min, Yuan, X-C., Properties of surface plasmon polaritons excited by generalized cylindrical vector beams, Appl. Phys. B., 119, 305-311(2015).