Alkannatinctoria Barks as Organic Photo Sensitizers for Dye Sensitized TiO2 Thin Film Solar Cells.
J. Environ. Nanotechnol., Volume 5, No 3 (2016) pp. 44-50
Abstract
Nano structured TiO2 thin film dye-sensitized solar cells have been fabricated using TiO2 photoelectrode sensitized using the extracts of Alkanna tinctoria barks as organic sensitizers and their characteristics have been studied. The organic extracts having Alkannin pigment, which have hydroxyl and carboxylic groups in the molecule can attach effectively to the surface of TiO2 film. The UV-Vis absorbance spectra of organic extract found to be maximum of 692 nm. The solar cell constructed using the Alkanna tinctoria barks sensitized TiO2 photo-electrode exhibited a short-circuit photocurrent of 6.08E-5A and a power conversion efficiency of 0.0971 %. Organic dye sensitized TiO2 photo electrodes present the prospect to be used as an environment-friendly, low-cost alternative system.
Full Text
Reference
Al-Alwani, M. A. M., Mohamad, A. B., Kadhum, A. A. H. and Ludin, N. A., Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications, Mol. Biomol. Spectrosc., 138, 130-137(2015).
https://doi.org/10.1016/j.saa.2014.11.018
Altobello, S., Argazzi, R., Caramori, S., Contado, C., Da Fre, S., Rubino, P., Chone, C., Larramona, G. and Bignozzi, C. A., Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Rupolypyridine complexes, J. Am. Chem. Soc., 127(44), 15342–15343(2005).
https://doi.org/10.1021/ja053438d
Argazzi, R., Larramona, G., Contado, C. and Bignozzi, C. A., Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine and cyanide ligands, J. Photochem. Photobiol.A, 164(1-3), 15–21(2004).
https://doi.org/10.1016/j.jphotochem.2003.12.016
Bauer, C., Boschloo, G. and Hagfedlt, A., Ultrafast studies of electron injection in Ru dye sensitized SnO2 nanocrystalline thin film, Int. J. Photoenergy, 4(1), 17-20(2002).
https://doi.org/10.1155/S1110662X0200003X
Calogero, G., Cazzanti, S., Caramori, S., Di Marco, G., Argazzi, R., Di Carlo, A., Bignozzi and C. A., Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells, J. Photochem. Photobiol. A: Chemistry, 92(11), 1341-1346(2008).
https://doi.org/10.1016/j.solmat.2008.05.007
Campbell, W. M., Jolley, K. W., Wagner, P., Wagner, K., Walsh, P. J., Gordon, K. C., Schmidt-Mende, L., Nazeeruddin, M. K., Wang, Q., Graetzel, M. and Officer, D. L., Highly efficient porphyrin sensitizers for dye-sensitized solar cells, J. Phys. Chem. C, 111(32), 11760–11762(2007).
https://doi.org/10.1021/jp0750598
Chappel, S., Chen, S. G. and Zaban, A., TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 18(8), 3336-3342(2002).
https://doi.org/10.1021/la015536s
Cherepy, N. J., Smestad, G. P., Graetzel, M. and Zhang, G. J., Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode, J. Phys. Chem. B, 101(45), 9342-9351(1997).
https://doi.org/10.1021/jp972197w
Dai, Q. and Rabani, J., Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium, Chem. Commun., 20, 2142-2143(2001).
https://doi.org/10.1039/b106197f
Dai, Q. and Rabani, J., Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium, J. Photochem. Photobiol..A, 148(1-3), 17-24(2002).
https://doi.org/10.1016/S1010-6030(02)00073-4
Gerischer, H., Electrochemical techniques for the study of photosensitization, Photochem. Photobiol., 16(4), 243-260(1972).
https://doi.org/10.1111/j.1751-1097.1972.tb06296.x
Graetzel, M., Solar energy conversion by dye-sensitized photovoltaic cells, Inorg.Chem., 44(20), 6841-6851(2005).
https://doi.org/10.1021/ic0508371
Herna´ndez-Martı´nez, A. R., Estevez, M., Vargas, S., Quintanilla, F. and Rodrı´guez, R., Natural pigment-based dye-sensitized solar cells, J. Appl. Res. Technol., 10(1), 38-47(2012).
Kay, A. and Graetzel, M., Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem., 97(23), 6272-6277(1993).
https://doi.org/10.1021/j100125a029
Keis, K., Vayssieres, L., Lindquist, S. E. and Hagfedlt, A., Nanostructured ZnO electrodes for photovoltaic applications, Nanostruct.Mater., 12(1-4), 487-490(1999).
https://doi.org/10.1016/S0965-9773(99)00165-8
Kevin Gould, K. D. and Winefield, C., Anthocyanins biosynthesis, functions, and applications, Springer Science, USA(2009).
Kuciauskas, D., Freund, M. S., Gray, H. B., Winkler, R. J. and Lewis, N. S., Photodissociation of nitric oxide from nitrosylmetalloporphyrins in micellar solutions, J. Phys. Chem. B, 105(2), 392-398(2001).
https://doi.org/10.1021/jp002515i
Liska, P., Vlachoupoulos, N., Nazeeruddin, M. K., Comte, P. and Graetzel, M., cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible, J. Am. Chem. Soc., 110(11), 3686–3687(1988).
https://doi.org/10.1021/ja00219a068
Maldonado, S., Fitch, G. A. and Lewis, N. S., In series on photoconversion of solar energy: nanostructured and photoelectric chemical system for solar photon conversion; Archer, M. D., Nozik, A., Eds.; Imperial College Press: London, 3, 537(2007).
Martinson, A. B. F., Goes, S. M., Fabregat-Santiago, F., Bisquert, J., Pellin, M. J. and Hupp, T. J., Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics, J. Phys. Chem. A, 113(16), 4015-4021(2009).
https://doi.org/10.1021/jp810406q
Monzir, S., Abdel-Latif, Taher, M., El-Agez, Sofyan, A., Taya, Amal, Y.,Batniji,Hatem, S. and El-Ghamri, Plant seeds-based dye-sensitized solar cells, Mater. Sci. Appl., 4(9),516-520(2013).
https://doi.org/10.4236/msa.2013.49063
Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N. and Graetzel, M., Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 115(14), 6382–6390(1993).
https://doi.org/10.1021/ja00067a063
Nazeeruddin, M. K., Pechy, P., Liska, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. and Graetzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc., 123(8), 1613–1624(2001).
https://doi.org/10.1021/ja003299u
O’Regan, B. and Graetzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nat., 353, 737-740(1991).
https://doi.org/10.1038/353737a0
Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. and Bignozzi, C. A., Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells, J. Am. Chem. Soc., 124(37), 11215–11222(2002).
https://doi.org/10.1021/ja027355y
Sarto Polo, A. and Murakami Iha, N. Y., Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba, Sol. Energy Mater. Sol. Cells, 90(13), 1936-1944(2006).
https://doi.org/10.1016/j.solmat.2006.02.006
Sayama, K., Sugihara, H. and Arakawa, H., Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye, Chem. Mater., 10(12), 3825-3832(1998).
https://doi.org/10.1021/cm980111l
Senthil, T. S., Muthukumarasamy, N. and Misook Kang, Ball/dumbbell-like structured micrometer-sized Sb 2 S 3 particles as a scattering layer in dye-sensitized solar cells, Opt. lett., 39(7), 1865-1868(2014).
https://doi.org/10.1364/OL.39.001865
Tennakone, K., Kumara, G. R., Kottegoda, I. R. and Wijayantha, K., The photostability of dye-sensitized solid state photovoltaic cells: factors determining the stability of the pigment in a nanoporous n-/cyanidin/p-CuI cell,Semicond. Sci. Technol., 12(1), 128-132(1997).
https://doi.org/10.1088/0268-1242/12/1/021
Tian, H., Yang, X. and Hagfeldt, A., A metal-free “black dye” for panchromatic dye-sensitized solar cells, Energy Environ. Sci., 2, 674-677(2009).
https://doi.org/10.1039/b901238a
Tributsch, H. and Calvin, M., Electrochemistry of excited molecues: photoelectrochemical reaction of chlorophylls, Photochem. Photobiol., 14(2), 95-112(1971).
https://doi.org/10.1111/j.1751-1097.1971.tb06156.x
Vetrivel, V., Rajendran, K., Senthil, T. S., Anbarasu, P., Structural and optical characteristics transformation in the sol-gel synthesized pure titanium dioxide, J. Environ. Nanotechnol., 5(1), 8-12(2016).
https://doi.org/10.13074/jent.2016.03.161179
Vetrivel, V., Rajendran, K. and Kalaiselvi, V., Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method, Int. J. Chem. Tech. Res., 7(3), 1090-1097(2014).
Wongcharee, K., Meeyoo, V. and Chavadej, S., Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers, Sol. Energy Mater. Sol. Cells, 91(7), 566-571 (2007).
https://doi.org/10.1016/j.solmat.2006.11.005
Yum, J. H., Walter, P., Huber, S., Rentsch, D., Geiger, T., Neusch, F., DeAngelis, F., Graetzel, M. and Nazeeruddin, M. K., Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye, J. Am. Chem. Soc., 129(34), 10320–10321(2007).
https://doi.org/10.1021/ja0731470
Zhang, D., Lanier, S. M., Downing, J. A., Avent, J. L., Lum, J. and McHale, J. L., Betalain pigments for dye-sensitized solar cells, J. Photochem. Photobiol. A, 195(1), 72–80(2008).