Affinity of Cytotoxic Copper(II) Complex to Bovine Serum Albumin
J. Environ. Nanotechnol., Volume 5, No 3 (2016) pp. 09-19
Abstract
The interaction of water soluble copper(II) complex, [Cu(dipica)(CH3COO)]ClO4 (1), where dipica is di-(2-picolyl)amine, as in vitro cytotoxic agent, with bovine serum albumin (BSA) has been studied by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopic techniques at pH 7.4. The quenching constants and binding parameters such as binding constants and number of binding sites were determined by fluorescence quenching method. The obtained results proved that the fluorescence quenching of BSA by 1 was a result of the formation of a non-fluorescent BSA-1 system with the binding constants of 1.81 x 10-5 M-1 and 2.10 x 10-5 M-1 at 300 K and 310 K respectively. The calculated thermodynamic parameters (G°, H° and S°) confirmed that the binding reaction is mainly entropy-driven and hydrophobic forces played major role in the reaction. The distance, r, between the donor (BSA) and acceptor (1) was obtained according to the Forster theory of nonradiative energy transfer. On the other hand, structural analysis indicates that binding of 1 resulting in a higher change in the local polarity around tryptophan rather than tyrosine residues of BSA as revealed by synchronous fluorescence spectra and a decrease in α-helix as revealed by the far-UV CD spectra.
Full Text
Reference
Arnell, R., Ferraz, N. and Fornstedt, T., Analytical characterization of chiral drug-protein interactions: Comparison between the optical biosensor (Surface Plasmon Resonance) assay and the HPLC perturbation method, Anal. Chem., 78, 1682-1689(2006).
https://doi.org/10.1021/ac051802l
Bi, S., Sun, Y., Qiao, C., Zhang, H. and Liu, C., Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study, J. Lumin., 129, 541-547 (2009).
https://doi.org/10.1016/j.jlumin.2008.12.010
Cheng, Z. J. and Zhang, Y. T., Spectroscopic investigation on the interaction of salidroside with bovine serum albumin, J. Mol. Struct., 889, 20-27 (2008).
https://doi.org/10.1016/j.molstruc.2008.01.013
Chen, G. Z., Haong, X. Z., Xu, J. C., Zhang, Z. Z. and Wang, Z. B., The Methods of Fluorescence Analysis, 2nd edn., pp. 2-112, Beijing Science Press (1990).
Chen. J., Jiang, X. Y., Chen, X. Q. and Chen, Y., Effect of temperature on the metronidazole -BSA interaction: Multi-spectroscopic method, J. Mol. Struct., 876, 121-126(2008).
https://doi.org/10.1016/j.molstruc.2007.06.011
Chen, Q. Y., Fu, H. J., Zhu, W. H., Qi, Y., Ma, Z. P., Zhao, K. D. and Gao, J., Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine, Dalton Trans., 40, 4414-4420(2011).
https://doi.org/10.1039/C0DT01616K
Cui, F., Qin, L., Zhang, G., Liu, X., Yao, X. and Lei, B., A concise approach to 1,11-didechloro-6-methyl-4’-O-demethylrebeccamycin and its binding to human serum albumin: Fluorescence spectroscopy and molecular modeling method, Bioorg. Med. Chem., 16, 7615- 7621 (2008).
https://doi.org/10.1016/j.bmc.2008.07.017
Curry, S., Mandelkow, H., Brick, P. and Franks, N., Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat. Struct. Mol. Biol., 5, 827-835 (1998).
Cyril, L., Earl, J. K. and Sperry, W. M., Biochemist’s Handbook, p. 83, E and FN Epon Led, London (1961).
Divsalar, A., Bagheri, M. J., Saboury, A. A., Mansoori-Torshizi, H. and Amani, M., Investigation on the interaction of newly designed anticancer Pd(II) complexes with different aliphatic tails and human serum albumin, J. Phys. Chem. B, 113, 14035- 14042 (2009).
https://doi.org/10.1021/jp904822n
Eftink, M. R. and Ghiron, C. A., Fluorescence quenching studies with proteins, Anal. Biochem., 114, 199-227 (1981).
https://doi.org/10.1016/0003-2697(81)90474-7
Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys.,437, 55-75 (1948).
https://doi.org/10.1002/andp.19484370105
Galanski, M., Jakupec, M. A. and Keppler, B. K., Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches, Curr. Med. Chem., 12, 2075-2094 (2005).
https://doi.org/10.2174/0929867054637626
Hof, M., Hutterer, R. and Fidler, V., Fluorescence Spectroscopy in Biology, Springer Science+Business Media, Berlin (2005).
Hu, Y. J., Liu, Y., Jiang, W., Zhao, R. M. and Qu, S. S., Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine, J. Photochem. Photobiol. B, 80, 235-242 (2005).
https://doi.org/10.1016/j.jphotobiol.2005.04.005
Jayabharathi, J., Thanikachalam, V. and Venkatesh Perumal, M., Mechanistic investigation on binding interaction of bioactive imidazole with protein bovine serum albumin - A biophysical study, Spectrochim. Acta Part A, 79, 502-507 (2011).
https://doi.org/10.1016/j.saa.2011.03.020
Kang, J., Liu, Y., Xie, M., Li, S., Jiang, M. and Wang, Y.: Interactions of human serum albumin with chlorogenic acid and ferulic acid, Biochim. Biophys. Acta, 1674, 205-214 (2004).
https://doi.org/10.1016/j.bbagen.2004.06.021
Kelly, S. M., Jess, T. J. and Price, N. C., How to study proteins by circular dichroism, Biochim. Biophys. Acta, 1751, 119-139 (2005).
https://doi.org/10.1016/j.bbapap.2005.06.005
Keppler, B. K., Lipponer, G., Stenzel, B. and Kranz, F., Metal complexes in cancer Chemotherapy, Verlag Chemie VCH, Weinheim (1993).
https://doi.org/10.1002/ange.19941060935
Kragh-Hansen, U., Molecular aspects of ligand binding to serum albumin, Pharmacol. Rev., 33, 17-53 (1981).
Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd edn., Springer Science+ Business Media, New York (2006).
Lakowicz, J. R. and Weber, G., Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules, Biochemistry, 12, 4161-4170 (1973).
https://doi.org/10.1021/bi00745a020
Leckband, D. A.: Measuring the forces that control protein interactions, Annu. Rev. Biophys. Biomol. Struct., 29, 1-26 (2000).
https://doi.org/10.1146/annurev.biophys.29.1.1
Lloyd, J. B. F., Evett, I. W., Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra, Anal. Chem., 49, 1710-1715(1977).
https://doi.org/10.1021/ac50020a020
Lu, Z. X., Cui, T., Shi, Q. L., Application of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology, 1st edn., pp. 79-82, Science Press, Beijing (1987).
Lunardi, C. N., Tedesco, A. C., Kurth, T. L., Brinn, I. M., The complex between 9-(n-decanyl)acridone and Bovine Serum Albumin. Part 2. What do fluorescence probes probe?, Photochem. Photobiol. Sci., 2, 954-959 (2003).
https://doi.org/10.1039/B301789C
Miller, J. N., Recent advances in molecular luminescence analysis, Proc. Analy. Div. Chem. Soc., 16, 203-208 (1979).
https://doi.org/10.3390/ijms140714185
Peters, T., Serum albumin, Adv. Protein Chem., 37, 161-245 (1985).
https://doi.org/10.1016/S0065-3233(08)60065-0
Ross, P. D. and Subramanian, S., Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry, 20, 3096-3102 (1981). https://doi.org/10.1021/bi00514a017
Price, N. C., Conformational issues in the characterization of proteins, Biotechnol. Appl. Biochem., 31, 29-40 (2000).
https://doi.org/10.1042/BA19990102
Samari, F., Hemmateenejad, B., Shamsipur, M., Rashidi, M. and Samouei, H., Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: A spectroscopic approach, Inorg. Chem., 51, 3454-3464 (2012).
https://doi.org/10.1021/ic202141g
Sangeetha, S. and Murali, M., Water soluble copper(II) complex [Cu(dipica)(CH3COO)]ClO4: DNA binding, pH dependent DNA cleavage and Cytotoxicity, Inorg. Chem. Commun., 59, 46-49 (2015).
https://doi.org/10.1016/j.inoche.2015.06.032
Sulkowska, A., Równicka, J., Bojko, B. and Sułkowski, W., Interaction of anticancer drugs with human and bovine serum albumin, J. Mol. Struct., 651-653, 133-140 (2003).
https://doi.org/10.1016/S0022-2860(02)00642-7
Tang, J. H., Luan, F. and Chen, X. G., Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling, Bioorg. Med. Chem., 14, 3210-3217 (2006).
https://doi.org/10.1016/j.bmc.2005.12.034
Waddell, J., Steenbock, H., Elvehjem, C. A., Hart, E. B., Donk, E. V., Further proof that the anemia produced on diets of whole milk and iron is due to a deficiency of copper, J. Biol. Chem., 83, 251-260 (1929).
Wang, T., Zhao, Z., Wei, B., Zhang, L. and Ji, L., Spectroscopic investigations on the binding of dibazol to bovine serum albumin, J. Mol. Struct., 970, 128-133 (2010).
https://doi.org/10.1016/j.molstruc.2010.02.061
Wang, H., Jiang, X., Zhou, I., Cheng, Z., Yin, W., Duan, M., Liu, P. and Jiang, X., Study of the interaction between 5-sulfosalicylic acid and bovine serum albumin by fluorescence spectroscopy, J. Lumin., 134, 747-753 (2013).
https://doi.org/10.1016/j.jlumin.2012.06.053
Wu, F. Y., Ji, Z. J., Wu, Y. M., Wan, X. F., Interaction of ICT receptor with serum albumins in aqueous buffer, Chem. Phys. Lett., 424, 387-393 (2006).
https://doi.org/10.1016/j.cplett.2006.05.019
Yuan, J. P., Guo, W. W., Yang, X. R., Wang, E. K., Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots, J. Anal. Chem., 81, 362-368 (2009).
https://doi.org/10.1021/ac801533u
Zhang, G., Wang, Y., Zhang, H., Tang, S. and Tao, W., Human serum albumin interaction with paraquat studied using spectroscopic methods, Pestic. Biochem. Physiol., 87, 23-29 (2007).
https://doi.org/10.1016/j.pestbp.2006.05.003
Zhao, X., Liu, R., Chi, Z., Teng, Y. and Qin, P., New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies, J. Phys. Chem. B, 114, 5625-2631 (2010).
https://doi.org/10.1021/jp100903x.
Zhou, N., Liang, Y. Z. and Wang, P., Characterization of the interaction between furosemide and bovine serum albumin, J. Mol. Struct., 872, 190-196 (2008).