Influence of Hole and Electron Transport Materials on Perovskite Sensitized Solar Cells-A Review
J. Environ. Nanotechnol., Volume 5, No 2 (2016) pp. 48-64
Abstract
Organic/Inorganic lead halide perovskite solar cells (PrSCs) have received considerable attention in recent years as the promising materials capable of developing high performance photovoltaic devices due to their high light absorption coefficient, tunable band gap, high carrier mobility, long carrier diffusion length, low temperature processing and abundant elemental constituents. At present, perovskite solar cells have been ushered in a new era of renewed efforts towards increasing the efficiency and lowering the cost of solar cells. Recently, Perovskite solar cells have reached an efficiency of nearly 20%. This technology combines the benefits of Dye Sensitized Solar Cells (DSSCs), Organic Photovoltaics (OPVs), and thin film solar cells. In this review, we have reported the brief prior art perspective of perovskite based solar cells, take a cognizance of the current state-of-the-art, highlight the challenges and the opportunities. This review also gives an overview on the impact of different hole transport materials (HTM), electron transport materials (ETM) and the role of Carbon nanomaterials as ETM, HTM and electrode materials.
Full Text
Reference
Abrusci, A., Stranks, S. D., Docampo, P., Yip, H. L., Jen, A. K. Y. and Snaith, H. J., High performance perovskite polymer hybrid solar cells via electronic coupling with fullerene monolayers, Nano Lett., 13(7), 3124-3128(2013).
https://doi.org/10.1021/nl401044q
Ball, J. M., Lee, M. M., Hey, A. and Snaith, H. J., Low-temperature processed meso superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 6(6), 1739(2013).
https://doi.org/10.1039/c3ee40810h
Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. and Johansson, E. M. J., Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells, J. Phys. Chem. Lett., 4(9), 1532-1536(2013).
https://doi.org/10.1021/jz400638x
Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubes, Surf. Sci. Rep., 58(1-4), 1-109(2005).
https://doi.org/10.1016/j.surfrep.2005.07.001
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. and Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nat., 499(7458), 316-320(2013).
https://doi.org/10.1038/nature12340
Cai, B., Xing, Y., Yang, Z., Zhang, W. H. and Qiu, J., High performance hybrid solar cells sensitized by organolead halide perovskites, Energy Environ. Sci., 6(5), 1480(2013).
https://doi.org/10.1039/c3ee40343b
Cai, M., Tiong, V. T., Hreid, T., Bell, J. and Wang, H., An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells, J. Mater. Chem. A, 3(6), 2784-2793(2015).
https://doi.org/10.1039/c4ta04997g
Carnie, M. J., Charbonneau, C., Davies, M. L., Troughton, J. and Watson, T. M., Wojciechowski, K., Worsley, D. A., A one-step low temperature processing route for organolead halide perovskite solar cells, Chem. Comm., 49(72), 7893-7895(2013).
https://doi.org/10.1039/c3cc44177f
Nam, C. Y., Wu, Q., Su, D., Chiu, C., Tremblay, N. J., Nuckolls, C. and Black, C. T., Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, J. Appl. Phys., 110(6), 64307(2011).
https://doi.org/10.1063/1.3633236
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H. and Yang, Y., Planar Heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2), 622-625(2014).
https://doi.org/10.1021/ja411509g
Chiang, C. H., Tseng, Z. L. and Wu, C. G., Planar heterojunction perovskite/PC71BM solar cells with enhanced open circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A, 2, 15897-15903(2014).
https://doi.org/10.1039/c4ta03674c
Christians, J. A., Fung, R. C. M. and Kamat, P. V., An inorganic hole conductor for organo lead halide perovskite solar cells- Improved hole conductivity with copper iodide, J. Am. Chem. Soc., 136(2), 758-764(2014).
https://doi.org/10.1021/ja411014k
Christians, J. A., Manser, J. S. and Kamat, P. V., Best practices in perovskite solar cell efficiency measurements- avoiding the error of making bad cells look good, J. Phys. Chem. Lett., 6(5), 1-13(2015).
https://doi.org/10.1021/acs.jpclett.5b00289
Chung, I., Lee, B., He, J., Chang, R. P. and Kanatzidis, M. G., All solid-state dye-sensitized solar cells with high efficiency, Nat., 485(7399), 486-489(2012).
https://doi.org/10.1038/nature11067
De Jong, M. P., Van IJzendoorn, L. J. and De Voigt, M. J. A., Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett., 77(14), 2255-2257(2000).
https://doi.org/10.1063/1.1315344
Dobrzańska-Danikiewicz, A. D. and Drygała, A., Strategic development perspectives of laser processing on polycrystalline silicon surface, Arch. Mater. Sci. Eng., 50(1), 5-20(2011).
Dobrzański, L.A., Drygała, A. and Prokopiuk vel Prokopowicz, M., Selection of components for photovoltaic system, Arch. Mater. Sci. Eng., 62(2), 53-59(2013).
Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E and Snaith, H. J., Efficient organo etal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Comm., 4, 2761(2013).
https://doi.org/10.1038/ncomms3761
Bi, D., Yang, L., Boschloo, G., Hagfeldt, A., and Erik M. J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells, J. Phys. Chem. Lett., 4(9), 1532-1536(2013).
https://doi.org/10.1021/jz400638x
Edri, E., Kirmayer, S., Cahen, D. and Hodes, G., High Open-Circuit Voltage Solar Cells Based on Organic/Inorganic Lead Bromide Perovskite, J. Phys. Chem. Lett., 4(6), 897-902(2013).
https://doi.org/10.1021/Jz400348
Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston M. B. and Herz, L. M., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci. 7(3), 982-988(2014).
https://doi.org/10.1039/C3EE43822H
Frank, S., Poncharal, P., Wang, Z.L. and de Heer, W.A., Carbon nanotube quantum resistors, Sci., 280(537), 1744-1746(1998).
https://doi.org/10.1126/science.280.5370.1744
Gillet, M., Aguir, K., Lemire, C., Gillet, E. and Schierbaum, K., The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films, 467(1-2), 239-246(2004).
https://doi.org/10.1016/j.tsf.2004.04.018
Gratzel, C. and Zakeeruddin, S.M., Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters, Mater. Today, 16(1-2), 11-18(2013).
https://doi.org/10.1016/j.mattod.2013.01.020
Han, T. H., Lee, Y., Choi, M. R., Woo, S. H., Bae, S. H., Hong, B. H., Ahn, J. H. and Lee, T. W., Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nat. Photonics, 6(2),105-110(2012).
https://doi.org/10.1038/nphoton.2011.318
Hardin, B. E., Snaith, H. J. and McGehee, M. D., The renaissance of dye sensitized solar cells, Nat. Photonics, 6(3), 162-169(2012).
https://doi.org/10.1038/nphoton.2012.22
Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. and Park, N. G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell, Nanoscale, 3(10), 4088(2011).
https://doi.org/10.1039/c1nr10867k
Jeon, N. J., Lee, J., Noh, J.H., Nazeeruddin, M. K., Grätzel, M. and Seok, S. I., Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials, J. Amer. Chem. Soc., 135(51), 19087-19090(2013).
https://doi.org/10.1021/ja410659k
Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Botanical Hydrocarbon sources based by spray pyrolysis method for DSSC applications, Silicon, 8(3), 1-7(2016).
https://doi.org/10.1007/s12633-016-9419-7
Kamat, P. V., Quantum Dot Solar Cells, The Next Big Thing in Photovoltaics, J. Phys. Chem. Lett., 4(6), 908-918(2013).
https://doi.org/10.1021/jz400052e
Kim, B. J., Kim, dong, H., Lee, Y. Y., Shin, H. W., Han, G. S., Hong, J. S. and Jung, H. S., Highly efficient and bending durable perovskite solar cells toward wearable power source, Energy Environ. Sci., 8(3), 916-921(2015).
https://doi.org/10.1039/c4ee02441a
Kim, H., Lim, K. G. and Lee, T. W., Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers, Energy Environ. Sci., 9(1), 12-30(2016).
https://doi.org/10.1039/C5EE02194D
Kim, H., Bae, S. H., Han, T. H., Lim, K. G., Ahn, J. H. and Lee, T. W., Organic solar cells using CVD grown graphene electrodes, Nanotech., 25(1), 014012(2014).
https://doi.org/10.1088/0957-4484/25/1/014012
Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A. and Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(7436), 591(2012).
https://doi.org/110.1038/srep00591
Kim, H. S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E. J., Park, N. G. and Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nat. Comm., 4, 2242(2013).
https://doi.org/10.1038/ncomms3242
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(17), 6050-6051(2009).
https://doi.org/10.1021/ja809598r
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds, ECS Meeting, 27, MA2008-02(2008).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. and Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Sci., 338(6107), 643-647(2012).
https://doi.org/10.1126/science.1228604
Lee, S. J., Kim, Y. H., Kim, J. K., Baik, H., Park, J. H., Lee, J., Nam, J., Park, J. H., Lee, T. W., Yi, G. R. and Cho, J. H., A roll-to-roll welding process for planarized silver nanowire electrodes, Nanoscale, 6(20), 11828-11834(2014).
https://doi.org/10.1039/C4NR03771E
Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Mhaisalkar, S.G., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells, ACS Nano, 8(7), 6797-6804(2014).
https://doi.org/10.1021/nn501096h
Li, C., Wang, F., Xu, J., Yao, J., Zhang, B., Zhang, C., Xiao, M., Dai, S., Li, Y. and Tan, Z., Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination, Nanoscale, 7(21), 9771-9778(2015).
https://doi.org/10.1039/c4nr06240j
Liang, P. W., Chueh, C. C., Xin, X. K., Zuo, F., Williams, S. T., Liao, C. Y. and Jen, A. K. Y., High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites, Adv. Energy Mater., 5(1), (2015).
https://doi.org/10.1002/aenm.201400960
Liang, P. W., Liao, C. Y., Chueh, C. C., Zuo, F., Williams, S. T., Xin, X. K., Jen, A. K. Y., Additive enhanced crystallization of solution processed perovskite for highly efficient planar heterojunction solar cells, Adv. Mater., 26(22), 3748-3754(2014).
https://doi.org/10.1002/adma.201400231
Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. and Meredith, P., Electro-optics of perovskite solar cells, Nat. Photonics, 9(2), 106-112(2015).
https://doi.org/10.1038/nphoton.2014.284
Liu, D., Gangishetty, M. K. and Kelly, T. L., Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells, J. Mater. Chem. A, 2(46), 19873-19881(2014).
https://doi.org/10.1039/C4TA02637C
Liu, D. and Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photonics, 8(2), 133-138(2013).
https://doi.org/10.1038/nphoton.2013.342
Liu, M., Johnston, M. B. and Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition, Nat., 501(7467), 395-398(2013).
https://doi.org/10.1038/nature12509
Liu, C., Wang, K., Du, P., Meng, T., Yu, X., Cheng, S.Z.D. and Gong, X., High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer, ACS Appl. Mater. Interfaces, 7(2), 1153-1159(2015).
https://doi.org/10.1021/am506869k
Liu, X., Jiao, W., Lei, M., Zhou, Y., Song, B. and Li, Y., Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells, J. Mater. Chem. A, 3(17), 9278-9284(2015).
https://doi.org/10.1039/c4ta05881j
Lu, L., Joannopoulos, J. D. and Soljacic, M., Topological photonics, Nat. Photon, 8(11), 821-829 (2014).
https://doi.org/10.1038/nphoton.2014.248
Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M. M., Graetzel, M., Nazeeruddin, M. K. and Bolink, H. J., Perovskite solar cells employing organic charge transport layers, Nat. Photonics, 8(2), 128-132(2014).
https://doi.org/10.1038/nphoton.2013.341
Min, J., Zhang, Z. G., Hou, Y., Quiroz, C. O. R., Przybilla, T., Bronnbauer, C., … and Brabec, C. J., Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance, Chem. Mater., 27(1), 227-234(2015).
https://doi.org/10.1021/cm5037919
Nam, C. Y., Wu, Q., Su, D., Chiu, C., Tremblay, N. J., Nuckolls, C. and Black, C. T., Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, J. Appl. Phys., 110(6), 64307(2011).
https://doi.org/10.1063/1.3633236
Nayak, P. K., Perovskite solar cells: an emerging photovoltaic technology, Adv. Mater., 18(2), 65-72(2014).
https://doi.org/10.1002/ adma.201304620
Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A.,Snaith, H. J., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7(9), 3061-3068(2014).
https://doi.org/10.1039/c4ee01076k
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. and Seok, S. I., Chemical management for colorful, efficient and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13(4), 1764-1769(2013).
https://doi.org/10.1021/nl400349b
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Hayase, S., CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm, J. Phys. Chem. Lett., 5(6), 1004-1011(2014).
https://doi.org/10.1021/jz5002117
O’Regan, B., Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nat., 353, 737-740(1991).
https://doi.org/10.1038/353737a0
Paek, S., Cho, N., Choi, H., Jeong, H., Lim, J.S., Hwang, J. Y., Lee, J. K. and Ko, J., Improved external quantum efficiency from solution processed CH3NH3PBI3 perovskite/PC71BM planer heterojunction for high efficiency hybrid solar cells, J. Phys. Chem. C, 118(45), 25899-25905(2014).
https://doi.org/10.1021/jp508162p
Park, N. G., Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, J. Phys. Chem. Lett., 4(15), 2423-2429(2013).
https://doi.org/10.1021/jz400892a
Park, N. G., Perovskite solar cells: An emerging photovoltaic technology, Mater. Today, 18(2), 65-72(2015).
https://doi.org/10.1016/j.mattod.2014.07.007
Qin, P., Domanski, A. L., Chandiran, A. K., Berger, R., Butt, H. J., Dar, M. I., … and Grätzel, M., Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells, Nanoscale, 6(3), 1508-1514(2014).
https://doi.org/10.1039/c3nr05884k
Poorkazem, K., Liu, D. and Kelly, T. L., Fatigue resistance of a flexible, efficient and metal oxide-free perovskite solar cell, J. Mater. Chem. A, 3(17), 9241-9248(2015).
https://doi.org/10.1039/c5ta00084j
Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H. and Yang, S., All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays, Nanoscale, 5(8), 3245-3248(2013).
https://doi.org/10.1039/c3nr00218g
Roldan-Carmona, C., Malinkiewicz, O., Soriano, A., Minguez Espallargas, G., Garcia, A., Reinecke, P., Bolink, H. J., Flexible high efficiency perovskite solar cells, Energy Environ. Sci., 7(3), 994-997(2014).
https://doi.org/10.1039/c3ee43619e
Schulz, P., Whittaker-Brooks, L. L., MacLeod, B. A., Olson, D. C, Loo, Y. L. and Kahn, A., Electronic level alignment in inverted organometal perovskite solar cells, Adv. Mater. Interface., 2(7), 1400532(2015).
https://doi.org/10.1002/admi.201400532
Service, R. F., Turning up the light, Sci., 342(6160), 794-795,797(2013).
https://doi.org/10.1126/science.342.6160.794
Service, R. F., Perovskite Solar Cells Keep On Surging, Science, 344(6183), 458(2014).
https://doi.org/10.1126/science.344.6183.458
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Comm., 5, 5784(2014).
https://doi.org/10.1038/ncomms6784
Shi, Y., Wang, K., Du, Y., Zhang, H., Gu, J., Zhu, C. and Ma, T., Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%, Adv. Mater., 25(32), 4413-4419(2013).
https://doi.org/10.1002/adma.201301852
Shiraishi, M. and Ata, M., Work function of carbon nanotubes, Carbon, 39(12), 1913-1917(2001).
https://doi.org/10.1016/S0008-6223(00)00322-5
Snaith, H. J., Estimating the maximum attainable efficiency in dye-sensitized solar cells, Adv. Funct. Mater., 20(1), 13-19(2010).
https://doi.org/10.1002/adfm.200901476
Snaith, H. J., Perovskites: The emergence of a new era for low-cost, high performance perovskite solar cells, J. Phys. Chem. Lett., 4(21), 3623-3630(2013).
https://doi.org/10.1021/jz4020162
Snaith, H. J. and Grätzel, M., Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells, Appl. Phys. Lett., 89(26), 262114(2006).
https://doi.org/10.1063/1.2424552
Snaith, H. J. and Grätzel, M., Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD, Adv. Mater., 19(21), 3643-3647(2007).
https://doi.org/10.1002/adma.200602085
Solar, P., Li, Z., Kulkarni, S. A., Boix, P. P., Shi, E., Cao, A., atabyal, S. K., Laminated Carbon Nanotube Networks for Metal Electrode-Free, ACS Nano, 8(7), 6797-6804(2014).
https://doi.org/10.1021/nn501096h
Song, T. B., Chen, Q., Zhou, H., Jiang, C., Wang, H. H., and Yang, Y., Perovskite solar cells: film formation and properties, J. Mater. Chem. A, 3(17), 9032-9050(2015).
https://doi.org/10.1039/c4ta05246c
Song, X., Wang, W., Sun, P., Ma, W. and Chen, Z. K., Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells, Appl. Phys. Lett., 106(3), 033901(2015).
https://doi.org/10.1063/1.4906073
Stoumpos, C. C., Malliakas, C. D. and Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52(15), 9019-9038(2013).
https://doi.org/10.1021/ic401215x
Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Miura, N., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Sci., 342(6156), 341-344(2013).
https://doi.org/10.1126/science.1243982
Ulbricht, R., Lee, S. B., Jiang, X., Inoue, K., Zhang, M., Fang, S., Zakhidov, A. A., Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Sol. Energy Mater. Sol. Cells., 91(5), 416-419(2007).
https://doi.org/10.1016/j.solmat.2006.10.002
Yin, W. J., Shi, T. and Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26(27), 4653-4658(2014).
https://doi.org/10.1002/adma.201306281
Wang, X., Li, Z., Xu, W., Kulkarni, S. A., Batabyal, S. K., Zhang, S., Wong, L. H., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotubes electrode, Nano Energy, 11, 728-735(2015).
https://doi.org/10.1016/j.nanoen.2014.11.042
Wang, J., Ball, J., Barea, E., Alexander-Webber, A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J. and Snaith, H., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett., 14(2), 724−730(2014).
https://doi.org/10.1021/nl403997a
Wang, F., Valentin, C. and Pacchioni, G., Rational band gap engineering of wo3 photocatalyst for visible light water splitting, Chem. Cat. Chem., 4(4), 476−478(2012).
https://doi.org/10.1002/cctc.201100446
Wang, Q. K., Wang, R. B., Shen, P. F., Li, C., Li, Y. Q., Liu, L. J., Duhm, S. and Tang, J. X., Energy level offsets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation, Adv. Mater. Interfaces, 2(3), 1400528(2015).
https://doi.org/10.1002/admi.201400528
Wang, K., Shi, Y., Dong, Q., Li, Y., Wang, S., Yu, X., Wu, M. and Ma, T., Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells, J. Phys. Chem. Lett., 6(5), 755-759(2015).
https://doi.org/10.1021/acs.jpclett.5b00010
Wang, K. C., Jeng, J. Y., Shen, P. S., Chang, Y. C., Diau, E. W. G., Tsai, C. H., Chao, T. Y., Hsu, H. C., Lin, P. Y., Chen, P., Guo, T. F. and Wen, T. C., p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756(2014).
https://doi.org/10.1038/srep04756
Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. and Snaith, H. J., Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci., 7(3), 1142-1147(2014).
https://doi.org/10.1039/c3ee43707h
Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W., Sun, B., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6(18), 10505-10510(2014).
https://doi.org/10.1039/c4nr03181d
Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y. and Huang, J., efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7(8), 2619-2623(2014).
https://doi.org/10.1039/c0ee00278j
Yella, A., Heiniger, L. P., Gao, P., Nazeeruddin, M. K. and Gratzel, M., Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency, Nano Lett., 14(5), 2591-2596(2014).
https://doi.org/10.1021/nl500399m
Yeo, J. S., Kang, R., Lee, S., Jeon, Y. J., Myoung, N., Lee, C. L., Kim, D. Y., Yun, J. M., Seo, Y. H., Kim, S. S. and Na, S. I., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano Energy, 12, 96-104(2015).
https://doi.org/10.1016/j.nanoen.2014.12.022
Yin, W. J., Shi, T. and Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26(27), 4653-4658(2014).
https://doi.org/10.1002/adma.201306281
You, J., Hong, Z., Yang, Y. M., Chen, Q., Cai, M., Song, T., Ang, Y., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8(2), 1674-1680(2014).
https://doi.org/10.1021/nn406020d
You, J., Yang, Y., Hong, Z., Song, T. B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W. H., Li, G. and Yang, Y., Moisture assisted perovskite film growth for high performance solar cells, Appl. Phys. Lett., 105(18), 183902(2014).
https://doi.org/10.1063/1.4901510
Yu, K. and Chen, J., Enhancing solar cell efficiencies through 1-D nanostructures, Nanoscale Res. Lett., 4(1), 1-10(2009).
https://doi.org/10.1007/s11671-008-9200-y
Zhang, Q. F., Dandeneau, C. S., Zhou, X. Y. and Cao, G. Z., ZnO nanostructures for dye sensitized solar cells, Adv. Mater., 21(41), 4087-4108(2009).
https://doi.org/10.1002/adma.200803827
Zhang, H., Azimi, H., Hou, Y., Ameri, T., Przybilla, T., Spiecker, E., Kraft, M., Scherf, U. and Brabec, C. J., Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chem.Mater., 26, 5190-5193(2014).
https://doi.org/10.1021/cm502864s
Zhao, D., Sexton, M., Park, H. Y., Baure, G., Nino, J. C. and So, F., High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer, Adv. Energy Mater., 5(6), 1401855(2015).
https://doi.org/10.1002/aenm.201401855
Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W. and Sun, B., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6(18), 10505-10510(2014).
https://doi.org/10.1039/C4NR03181D
Zhou, H. P., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S.,Yang, Y., Interface engineering of highly efficient perovskite solar cells, Sci., 345(6196), 542-546(2014).
https://doi.org/10.1126/science.1254050
Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T. M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J. L., Marder, S. R., Kahn, A. and Kippelen, B., A universal method to produce low-work function electrodes for organic electronics, Sci., 336(6079), 327-332(2012).