A Comparison of Surface Acoustic Wave (SAW) Delay Line Modelling Techniques for Sensor Applications
J. Environ. Nanotechnol., Volume 5, No 2 (2016) pp. 42-47
Abstract
This paper describes a comparative modelling study of Surface Acoustic Wave (SAW) devices. The Surface Acoustic Waves (SAWs) are generated and received by the interdigital transducer (IDT) on a piezoelectric substrate. SAW device design parameters like piezoelectric substrate, structure of IDT, number of finger pairs, device frequency and etc., are optimized and its frequency responses achieved by using three models, namely, Impulse response Model, Crossed-field Equivalent Circuit Model and Coupling-of-Modes Model. The modelling of ST-X Quartz based SAW Delay line with 40 finger pairs operating at a centre frequency of 300 MHz has been undertaken and its modelled frequency response studied via three models. Employing a custom made MATLAB® algorithm, the device is modelled by varying its design parameters. The modelled results are analyzed and compared for attaining better performances for potential applications in a SAW sensor.
Full Text
Reference
Banu Priya, R., Venkatesan, T., Pandiyarajan, G. and Haresh M. P., SAW devices - a comprehensive review, J. Environ. Nanotechnol., 3(3), 106-115(2014).
https://do.org/10.13074/jent.2014.09.143101
Brown, R. B., Horine, B. H. and Hines, J. H., Practical implementation of coupling-of-modes theory for SAW device modelling, In: Proceedings., IEEE Ultrasonics Symposium, 153-158(1989).
https://do.org/10.1109/ULTSYM.1989.66975
Campbell, C., Surface Acoustic Wave Devices and Their Signal Processing Applications, Academic Press, London (1989).
Devries, A., Surface Wave Bandpass Filters. In: Mathews H (ed) Surface Wave Fiters, John Wiley & Sons (1977).
Dong-Pei Chen and Haus, H. A., Analysis of Metal-Strip SAW Gratings and Transducers, IEEE Trans Sonics Ultrason, 32, 395-408(1985).
https://do.org/10.1109/T-SU.1985.31609
Durdag, K., Solid state acoustic wave sensors for real-time in-line measurement of oil viscosity, Sens. Rev., 28(1), 68-73(2008).
https://do.org/10.1108/02602280810850053
Elhosni, M., Elmazria, O., Petit-Watelot, S., Bouvot, L., Zhgoon, S., Talbi, A., Hehn, M., Aissa, K. A., Hage-Ali, S., Lacour, D., Sarry, F. and Boumatar, O., Magnetic field SAW sensors based on magnetostrictive-piezoelectric layered structures: FEM modeling and experimental validation, Sens. Actuat. A Phys., 240, 41-49(2016).
https://do.org/10.1016/j.sna.2015.10.031
Haresh, M. P., Sharma, M. U., Nimal, A. T. and Rajesh, K. B., Impulse modelled response of a 300 mhz st-quartz saw device for sensor specific applications, J. Environ. Nanotechnol., 2, 15-21(2013).
https://do.org/10.13074/jent.2013.02.nciset33
Hartmann, C. S., Bell, D. T. and Rosenfeld, R. C., Impulse model design of acoustic surface-wave filters, IEEE Trans Microw Theory Tech., 21(4), 162-175(1973).
https://do.org/10.1109/TMTT.1973.1127967
Hartmann, C. S., Wright, P. V., Kansy, R. J. and Garber, E. M., An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers, IEEE, 40-45(1982).
https://do.org/10.1109/ULTSYM.1982.197784
Haus, H. A., Bulk scattering loss of SAW grating cascades, I EEE Trans Sonics Ultrason., 24, 259-267(1977a).
https://do.org/10.1109/T-SU.1977.30941
Haus, H. A., Modes in SAW grating resonators, J. Appl. Phys., 48, 4955-4961(1977b).
https://do.org/10.1063/1.323625
Haus, H. A. and Huang, W., Coupled-mode theory, Proc IEEE, 79(10), 1505-1518(1991).
https://do.org/10.1109/5.104225
Haus, H. A. and Schmidt, R. V., Cascaded SAW gratings as passband filters, Electron. Lett., 13, 445-446(1977).
https://do.org/10.1049/el:19770322
Karthikeyan, S., Pandya, H. M., Sharma, M. U. and Gopal, K., Gas sensors-A review, J. Environ. Nanotechnol., 4(4), 01-14(2015).
https://do.org/10.13074/jent.2015.12.153163
Mathews, H., Surface Wave Filters Design, Construction and Use, John Wiley & Sons, New York(1977).
Priya, R. B., Venkatesan, T., Pandiyarajan, G. and Pandya, H. M., A short review of saw sensors, J. Environ. Nanotechnol., 4, 15-22(2015).
https://do.org/10.13074/jent.2015.12.154171
Raj, V. B., Singh, H., Nimal, A. T., Sharma, M. U. and Gupta, V., Oxide thin films (ZnO, TeO2, SnO2 and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sens. Actuat. B Chem., 178, 636-647(2013).
https://do.org/10.1016/j.snb.2012.12.074
Sharma, M. U., Kumar, D., Koul, S. K., Venkatesan, T., Pandiyarajan, G., Nimal, A. T., Kumar, P. R. and Pandya, H. M., Modelling of saw devices for gas sensing applications - A comparison, J. Environ. Nanotechnol., 3, 63-66(2014).
https://do.org/10.13074/jent.2014.12.144110
Shen, Y. T., Shen, C. Y. and Wu, L., Design of ST-cut quartz surface acoustic wave chemical sensors, Sens. Actuat. B Chem., 85, 277-283(2002).
https://do.org/10.1016/S0925-4005(02)00143-0
Smith, W., Gerard, H., Collins, J. H., Reeder, T. M. and Shaw, H. J., Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans Microw Theory Tech., 17, 856-864(1969).
https://do.org/10.1109/TMTT.1969.1127075
Thorvaldsson, T. and Nyffeler, F., Rigorous Derivation of the Mason Equivalent Circuit Parameters from Coupled Mode Theory, IEEE, 91-96(1986).
https://do.org/10.1109/ULTSYM.1986.198716
Venkatesan, T. and Pandya, H., Surface acoustic wave devices and sensors - a short review on design and modelling by impulse response, J. Environ. Nanotechnol., 2, 81-89(2013).
https://do.org/10.13074/jent.2013.09.132034
Venkatesan, T., Priya, R. B., Pandiyarajan, G. and Pandya, H. M., Idealized P-matrix based modelling and computational analysis of saw delay lines for improved performance in sensors, J. Environ. Nanotechnol., 4, 56-61(2015).