Structural, Compositional and Optical Properties of Nebulizer Sprayed Tin Oxide (SnO2) Thin Films at Different Temperatures
J. Environ. Nanotechnol., Volume 5, No 2 (2016) pp. 36-41
Abstract
SnO2 thin films are prepared by employing nebulizer spray pyrolysis (NSP) technique with various substrate temperatures as 300 oC, 350 oC, 400 oC and 450 oC. The morphological and optical properties of the materials are determined. The micro structural parameters like grain size, dislocation density, strain and crystallite size under different deposition temperatures are calculated. The X-ray diffraction pattern shows that the films are highly crystalline in nature. The grains of the thin films are found to grow with increased temperature. The grain growth and smoothness of the surface are observed from the scanning electron microscopy (SEM) analysis. The stoichiometric analysis is done by energy dispersive x-ray (EDX) analysis. From the UV-VIS spectrum it is observed that the percentage of transmission is enhanced with the increase of the substrate temperature. The photoluminescence (PL) spectra show the very sharp peaks indicating the interstitial oxygen vacancies.
Full Text
Reference
Abdullah M. M., Suhail, M.H., Abbas, S.I. Fabrication and Testing of SnO2 Thin Films as a Gas Sensor, Arch. Appl. Sci. Res., 4(3), 1279-1288(2012).
Albery, W. J., Archer, M. D., Optimum efficiency of photo galvanic cells for solar energy conversion, Nat., 270, 399–402(1977).
https://doi.org/10.1038/270399a0
Bose, A. C., Kalpana, D., Thangadurai, P. and Ramasamy, S., Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2, J. Power Sources, 107, 138-141(2002).
https://doi.org/10.1016/S0378-7753(01)00995-8
Chatelon, J. P., Tenier, C., Bemstein, E., Berjoan, R., Roger, J. A., Morphology of SnO2 thin films obtained by the sol-gel technique, Thin Solid Film, 247, 162(1994).
https://doi.org/10.1016/0040-6090(94)90794-3
Daisuker and Masaya, Room temperature hydrogen sensing properties of SnO2 thin films fabricated by the photochemical deposition and doping methods, J. Appl. Phys., 45, 7094–7096(2006).
https://doi.org/10.1143/JJAP.45.7094
Das, J., Mishra, D. K., Srinivasu, V. V., Sahu, D. S. and Roul, B. K., Structural, electrical and magnetic behavior in high-temperature sintered Zn1-x MnxO, Indian J. Phys, 89(11), 1143-1151(2015).
https://doi.org/10.1007/s12648-015-0693-9
Ferrere, S., Zaban, A., Gregg, B. A., Dye sensitization of nano crystalline tin oxide by. perylene derivatives, J. Phys. Chem. B, 101, 4490-4493(1997).
https://doi.org/10.1021/jp970683d
Gordillo, G., Moreno, L. C., de la Cruz, W. and Teheran, P., Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors, Thin Solid Films, 252, 61–66(1994).
https://doi.org/10.1016/0040-6090(94)90826-5
Kenji Murakami, Kiyofumi Nakajima, Shoji Kaneko, Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique, Thin Solid Films, 515, 8632-8636(2007).
https://doi.org/10.1016/j.tsf.2007.03.128
Kilic, C. and Zunger, A., Origins of coexistence of conductivity and transparencyin SnO2, Phys. Rev. Lett., 88, 95501(2002).
https://doi.org/10.1103/PhysRevLett.88.095501
Kim, D. H., Lee, S. H. and Kim, K., Comparison of CO-gas sensing characteristics between mono and multilayer Pt/SnO2 thin films, Sens. Actuat. B, 77, 427–431(2001).
https://doi.org/10.1016/S0925-4005(01)00749-3
Mishra, S., Ghanshyam, C., Ram, N., Shing, S., Bajpai, R. P. and Bedi, R. K., Alcohol sensing of tin oxide thin film prepared by sol–gel process, Bull. Mater. Sci., 25, 231-234(2002).
https://doi.org/10.1007/BF02711159
Moholkar, A. V., Pawar, S. M., Rajpure, K. Y., Bhosale, C. H., Kim, J. H., Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films, Appl. face Sci., 255, 9358-9364(2009).
https://doi.org/10.1016/j.apsusc.2009.07.035
Nath, R. K., Nath, S. S., Tin dioxide thin-film-based ethanol sensor prepared by spray pyrolysis, Sens. Mater., 21, 95-104(2009)
Paraguay, F., Estrada, D. W., Acosta, L. D., Andradeb, N. E. and Miki-Yoshida, M., Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 350, 192-202(1999).
https://doi.org/10.1016/S0040-6090(99)00050-4
Patil, G., Kajale, D. D., Chaven, D. N., Pawar, N. K., Ahire, P. T., Shinde, S. D., Gaikwad, V. B. and Jain, G. H., Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis, Bull. Mater. Sci., 34, 1–9(2011).
https://doi.org/10.1007/s12034-011-0045-0
Rajpure, K. Y., Preparation and properties of Fe-doped SnO thin films by spray pyrolysis technique, J. Mater. Chem. Phys., 64, 184(2000).
https://doi.org/10.1016/S0254-0584(99)00256-4
Ravichandran, K., Muruganantham, G., Sakthivel, B, Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique, Physica B-Condensed Matter., 404, 4299-4302(2009).
https://doi.org/10.1016/j.physb.2009.08.017
Rozati, S.M., The effect of substrate temperature on the structure of tin oxide thin films obtained by spray pyrolysis method, Mater. Character., 57, 150-153(2006).
https://doi.org/10.1016/j.matchar.2005.12.019
Sahni, S., Reddy, S. B., Murty, B. S., Influence of process parameters on the synthesis of nano-titania by sol-gel route, Mater. Sci. Eng. A, 758, 452-453(2007).
https://doi.org/10.1016/j.msea.2006.11.005
Serin, T., Serin, N., Karadeniz, S., Sarı, H., Tuğluoğlu, N., Pakma Electrical, O., Structural and optical properties of SnO2 thin films prepared by spray pyrolysis, J. Non- crystalline solids, 352(3), 209-215(2006).
https://doi.org/10.1016/j.jnoncrysol.2005.11.031
Subramanian, V., Jiang, J. C., Smith, P. H. and Rambabu, B., Preparation of cobalt doped SnO2 nanorods and nanoparticles, J. Nanosci. Nanotechnol., 4, 125(2004).
https://doi.org/10.1166/jnn.2004.045
Yadav, A. A., Masumdar, E. U., Moholkar, A. V., Rajpure, K. Y., Bhosale, C. H., Gas sensing of fluorine doped tin oxide thin films prepared by spray pyrolysis, Sens. Trans. J., 92(5), 55-60(2008).