Open Access

Characterization Techniques used in Nanomaterials -A Review

J. Chaudhary,
Department of Polymer science, M.L.S. University Udaipur, Rajasthan, India.
G. Tailor, Department of Polymer science, M.L.S. University Udaipur, Rajasthan, India. S. K. Shailesh, Department of Chemistry, JCDV Sirsa, Haryana, India. D. Kumar Department of Chemistry, IIT Jodhpur, Rajasthan, India.


J. Environ. Nanotechnol., Volume 5, No 2 (2016) pp. 30-35

https://doi.org/10.13074/jent.2016.06.162191

PDF


Abstract

Nanotechnology is the design of science, characterization and production of nano scale, which is about 1-100 nm. Nano science can be used across other field like Chemistry, Electronics Engineering, Physics, Biology, and Material Science. In the current scenario nano materials are used significantly quite different from their bulk counterparts used traditionally. Nano Science R&D includes manipulation under control of nano structure and their integration into larger material component. This paper will be a brief idea of various techniques which are used to characterize the nanomaterials.

Full Text

Reference


Asthana R., Kumar A., Dahotre N.B ., Materials processing and manufacturing science book, Amsterdam Acad. press, 552(2006).

Avadhani G. S., Characterization of Nano Materials using Electron Microscopy, The “Indo-Russian workshop on nanotechnology and laser induced plasma(2009).

Egerton, R. F., Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM, Springer, 202(2005).

Egerton, R., Physical principles of electron microscopy, Springer, 0387258000(2005).

Fu, M., Zhu, Y., Tan, R. and Shi G., Aligned polythiophene micro-and nanotubules, Adv. Mater., 13(24), 1874–1877(2001).

https://doi.org/10.1002/1521-4095(200112)13:24<1874:: AID-ADMA1874>3.0.CO;2-M

Goldstein, J., Scanning electron microscopy and x-ray microanalysis, Kluwer Academic/Plenum Publishers, 689(2003).

Hale, P. S., Leone M. Maddox, Joe G. Shapter, Nico H. Voelcker, Michael J. Ford and Eric R. Waclawik, Growth kinetics and modeling of ZnO nanoparticles, J. Chem. Educ., 82(5), 775 (2005).

https://doi.org/10.1021/ed082p775

Hongjin, J., Moon, K., Zhang, Z., Pothukuchi, S. and Wong, C. P., Variable frequency microwave synthesis of silver nanoparticles, 8,(1), 117-124, (2006).

Huang, Y., Xiangfeng Duan, Yi Cui, Lincoln J. Lauhon, Kyoung-Ha Kim, Charles M. Lieber, Logic gates and computation from assembled nanowire building blocks, Sci., 294(5545), 1313-1317(2001).

https://doi.org/10.1126/science.1066192

Li, X., Lu, M., Li, H., Electrochemical copolymerization of pyrrole and thiophene nanofibrils using template-synthesis method, J. Appl. Poly. Sci., 86(10), 2403-2407(2002).

https://doi.org/10.1002/app.10893

Marimuthu, M. and Berchmans, L. J., Preparation and characterization of B4C particulate reinforced Al-Mg alloy matrix composites, Int. J. Mod. Eng. Res., 3(6), 3723-3729 (2013).

Oura, K., Lifshits, V. G., Saranin A. A. and Zotov A. V., Katayama M., Surface science: An introduction, Springer-Verlag(2003).

Raj, R. and Tiwari, B., Synthesis and structural study of manganese (ii) bakelite composites by x-ray diffraction, Sci. Eng., 3(4), 23-26(2013).

Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis, Springer, 527(1998).

Robert, A., Heather A., Sugimoto Y., Pou P., Abe M., Jelinek, P., Pérez R., Morita S. and Custance O., Chemical identification of individual surface atoms by atomic force microscopy, Nature, 446 (7131), 64-67(2007).

https://doi.org/10.1038/nature05530

Rose, H. H., Optics of high-performance electron microscopes, Sci. Technol. Adv. Mater., 9(1), 01-08(2008).

Wang, J., Dai, J. and Yarlagadda, T., Carbon nanotube-conducting-polymer composite nanowires, Langmuir, 21(1), 9-12(2005). https://doi.org/10.1021/la0475977

Zhencui, S., Dawei P., Haitao H. and Xuran W., Synthesis, properties and application of polyaniline/titanium carbide nanoparticles modified electrode, Int. J. Electrochem. Sci., 10(3), 2413-2420(2015).

Contact Us

Powered by

Powered by OJS