Generation of Sub Wavelength Focal Hole Segment using Azimuthally Polarized Higher Order Beam by High NA Parabolic Mirror
J. Environ. Nanotechnol., Volume 5, No 1 (2016) pp. 13-16
Abstract
The focusing properties of a tight focusing of higher order azimuthally polarized beam through a high numerical aperture parabolic mirror are numerically investigatedbased on vector diffraction theory. It shows that the three-dimensional intensity distributions in the vicinity of the focus is dependent on the polarization rotation angle, pupil to beam radio and numerical aperture value.Additionally, somegenerated focal segment is a splitted holes and focal hole increase in the axial direction. Such a focal hole segment is highly useful for trapping particles, laser cutting, microscopy and the manipulation of optical traps of low refractive index particles.
Full Text
Reference
Braat, J. J. M., Dirksen, P., Janssen, A. J. E. M. and Van de Nes, A. S., Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system, J. Opt. Soc. Am. A., 20, 2281-2292(2003).
Braat, J. J. M., Dirksen, P., Janssen, A. J. E. M. Van Haver, S. and Van de Nes, A. S., Extended Nijboer–Zernike approach to aberration and bire fringence retrieval in a high-numerical-aperture optical system, J. Opt. Soc. Am. A., 22, 2635-2650(2005).
https://doi.org/10.1364/JOSAA.22.002635
Curtis, J. E., Koss, B. A. and Grier, D. G., Dynamic holographic optical tweezers, Opt. Commun., 207, 169-175(2002).
Dumke, W. P., The Angular beam divergence in double-heterojunction lasers with very thin active regions, IEEE J. Quantum Electron., 11(7), 400–402,(1975).
https://doi.org/10.1109/JQE.1975.1068627
Ganic, D., Gan, X., Gu, M., Focusing of doughnut laser beams by a high numerical aperture objective in free space, Opt. Express., 11, 2747-2752(2003).
Gibson, G., Courtial, J., Padgett, M., Vasnetsov, M., Pas’ko, V., Barnett, S. and Franke-Arnold, S., Free-space information transfer using light beams carrying orbital angular momentum, Opt. Express., 12(22), 5448-5456(2004).
https://doi.org/10.1364/OPEX.12.005448
Gu, M., Advanced optical imaging theory, Springer, Heidelberg, 2000.
He, H., Friese, M. E., Heckenberg, N. R. and Rubinsztein-Dunlop, H., Phy. Rev. Lett., 75(5), 826-832(1995).
https://doi.org/10.1103/PhysRevLett.75.826
Ichiliura, I., Hayashi, S. and Kino, G. S., High-density optical recording using a solid immersion lens, Appl. Opt., 36, 4339-4348(1997).
https://doi.org/10.1364/AO.36.004339
Kant, R., An analytical method of vector diffraction for focusing optical systems with seidel aberrations II: Astigmatism and coma, J. Mod. Opt., 42, 299-320(1995).
Kant, R., An analytical solution of vector diffraction for focusing optical systems with seidel aberrations I: Spherical aberration, curvature of field and distortion, J. Mod. Opt., 40, 2293-2310(1993).
Naqwi, A. and Durst, F., Focusing of diode laser beams: a simple mathematical model, Appl. Opt., 29(12), 1780-1785(1990).
https://doi.org/10.1364/AO.29.001780
Rui, F., Zhang, D., Ting, M., Gao, X. and Zhuang, S., Focusing of linearly polarized Lorentz-Gauss beam with one optical vortex, Optik., 124, 2969-2973(2013).
https://doi.org/10.1016/j.ijleo.2012.09.011
Sun, Q., Li, A., Zhou, K., Liu, Z., Fang, G. and Liu, S., Virtual source for rotational symmetric Lorentz-Gaussian beam, Chinese Optics Letters., 10, 062601(2012).
https://doi.org/10.3788/col201210.062601
Torre, A., Evans, W. A. B., Gawhary, O. E. and Severini, S., Relativistic Hermite polynomials and Lorentz beams, J. Opt. A, Pure Appl. Opt., 10 (11), 115007(2008).
https://doi.org/10.1088/1464-4258/10/11/115007
Visser, T. D. and Wiersma, S. H., Diffraction of Converging Electromagnetic Waves, J. Opt. Soc. Am. A., 9, 2034-2047(1992).
Visser, T. D. and Wiersma, S. H., Spherical aberration and the electromagnetic field in high-aperture systems, J. Opt. Soc. Am. A., 8, 1404-1410(1991).
Wilson, T., Confocal Microscopy (London: Academic Press) (1990).
https://doi.org/10.1081/E-EBBE-120024153
Yang, J., Chen, T., Ding, G. and Yuan, X., Semiconductor lasers and applications III, 682402 Proceedings of SPIE, 6824 68240A, (2008).
https://doi.org/10.1117/12.786203
Zhou, G. and Chen, R., Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system, Appl. Phy. B., 107,183-193(2012).
Zhou, G. Q. and Chu, X. X., Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere, Opt. Express, 18(2), 726-731(2010).
https://doi.org/10.1364/OE.18.000726
Zhou, G. Q., Focal shift of focused truncated Lorentz-Gauss beam, J. Opt. Soc. Am. A., 25(10), 2594-2599(2008).
https://doi.org/10.1364/JOSAA.25.002594
Zhou, G. Q., Nonparaxial propagation of a Lorentz-Gauss beam, J. Opt. Soc. Am. B., 26(1),141-147(2009).
https://doi.org/10.1364/JOSAB.26.000141
Zhou, G. Q., Nonparaxial propagation of a Lorentz-Gauss beam, J. Opt. Soc. Am. B., 26(1), 141-147(2009).
Zhou, G. Q., Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system, Opt. Express, 18(5), 4637-4643(2010).
https://doi.org/10.1364/OE.18.004637
Zhou, G., Beam propagation factors of a Lorentz–Gauss beam, Appl. Phy. B., 96, 149-153(2009).
https://doi.org/10.1007/s00340-009-3460-9
Zhou, G., Nonparaxial propagation of a Lorentz-Gauss beam, J. Opt. Soc. Am. B., 25, 2594-2599(2008).