Open Access

The Effect of Catalyst Composition on the Growth of Multi-Walled Carbon Nanotubes from Methyl Esters of Oryza sativa Oil

S. Kalaiselvan , Department of Chemistry, Hindusthan College of Engineering & Technology, Coimbatore, TN, India. K. Jothivenkatachalam , Department of Chemistry, Anna University Trichirapalli, BIT Campus, Trichy, TN, India S. Karthikeyan environkarthi@gmail.com
Department of Chemistry, Chikkanna Government Arts College, Triupur, TN, India.


J. Environ. Nanotechnol., Volume 5, No 1 (2016) pp. 33-38

https://doi.org/10.13074/jent.2016.03.161181

PDF


Abstract

Multi-walled carbon nanotubes on mono-metallic (Fe), bi-metallic (Fe-Co) and tri-metallic (Fe-Co-Mo) catalyst supported on silica were synthesized by spray pyrolysis of Oryza sativa oil at 650 °C for precursor flow rate of 20 mL per hour under N2 atmosphere. The characterization of the as-grown carbon nanostructure were analyzed by Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HRTEM), XRD and Raman analysis. The high yield with good morphology grown over Fe-Co-Mo tri-metallic catalyst supported on silica at 650 °C may be due to synergistic advantages of high catalytic decomposition and promotional character of Molybdenum

Full Text

Reference


Afre, R. A., Soga, T., Jimbo, T., Kumar, M., Ando, Y. and Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil, Chem. Phys. Lett., 414(1-3), 06-10(2005).

https://doi.org/10.1016/j.cplett.2005.08.040

Angulakshmi, V. S., Rajasekar, K., Sathiskumar, C. and Karthikeyan, S., Growth of vertically aligned carbon nanotubes on a silicon substrate by a spray pyrolysis method, New Carbon Materials, 28(4), 284-287(2013).

https://doi.org/10.1016/S1872-5805(13)60082-7

Angulakshmi, V. S., Sathiskumar, C., Karthik, M. and Karthikeyan, S., Synthesis of multi- walled carbon nanotubes from glycine max oil and their potential Applications, J. Environ. Nanotechnol., 2, 101-106(2013).

https://doi.org/10.13074/jent.2013.02.nciset316

Chatterjee, A. K., Sharon, M., Banerjee, R. & Neumann-Spallart, M., CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors. Electrochim. Acta, 48(23), 3439–3446(2003).

https://doi.org/10.1016/S0013-4686(03)00427-4

Ebbesen, T. W. and Ajayan, P. M., Large-scale synthesis of carbon nanotubes. Nature, 358(6383), 220–222(1992).

https://doi.org/10.1038/358220a0

Ghosh, P., Afre, R. A., Soga, T. & Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil. Mater. Lett., 61(17), 3768–3770(2007).

https://doi.org/10.1016/j.matlet.2006.12.03

Guo, T., Nikolaev, P., Rinzler, A. G., Tomanek, D., Colbert, D. T. & Smalley, R. E., Self-Assembly of tubular fullerenes., J. Phys. Chem. Lett., 99(27), 10694–10697(1995).

https://doi.org/10.1021/j100027a002

Huang, Z. P., Wang, D. Z., Wen, J. G., Sennett, M., Gibson, H. and Ren, Z. F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Appl. Phys. A: Materials Science and Processing, 74, 387-391(2002).

https://doi.org/10.1007/s003390101186

Iijima Sumio, Helical Microtubules of Graphitic Carbon, Nature, 354(6348): 56-58(1991).

https://doi.org/10.1038/354056a0

Kong, J., Cassell, A. M. and Dai, H., Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett, 292(4-6), 567-574 (1998).

https://doi.org/10.1016/S0009-2614(98)00745-3

Kumar, M. and Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor, Chem. Phys. Lett., 374(5-6),521-526(2003).

https://doi.org/10.1016/S0009-2614(03)00742-5

Kumar, R., Tiwari, R. S. and Srivastava, O. N., Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor : neem oil, Nanoscale Res. Lett., 6(1), 01-06(2011).

https://doi.org/10.1186/1556-276X-6-92

Mageswari, S., Kalaiselvan, S., Syed Shabudeen, P. S., Sivakumar, N. and Karthikeyan, S., Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal Int. J. Mater. Sci. Poland 32(4), 709-718(2014).

https://doi.org/10.2478/s13536-014-0235-8

Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D.-C., Bae, D. J., An, K. H. and Lee, Y. H., High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 39(5), 655-661(2001).

https://doi.org/10.1016/S0008-6223(00)00152-4

Paul, S. and Samdarshi, S. K., A green precursor for carbon nanotube synthesis, New Carbon Materials, 26(2), 85-88(2011).

https://doi.org/10.1016/S1872-5805(11)60068-1

Kalaiselvan, S., Karthikeyan, S. and Manivannan, G. Growth and structural studies of carbon nanotube from unconventional natural precursor by spray pyrolysis approach, Int. J. Appl. Eng. Res., 10(21), 42197-42201(2015).

Kalaiselvan, S., Gopal, K. and Karthikeyan, S., Synthesis and characterization of multiwalled carbon nanotubes using Brassica juncea oil as carbon source, Carbon- Sci. Tech., 8(1), 25-31(2016).

Kalaiselvan, S., Karthik, M., Vladimir, R. and Karthikeyan, S., Growth of bamboo like carbon nanotubes from Brassica juncea as natural precursor, J. Environ. Nanotechnol., 3(2), 92-100(2014).

https://doi.org/10.13074/jent.2014.03.142071

Karthikeyan, S. and Mahalingam, P., Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine oil at different temperatures, Int. J. Nanotechnol. Appl., 4(3), 189-197(2010).

Karthikeyan, S. and P. Mahalingam, Synthesis and characterization of multi- walled carbon nanotubes from biodiesel oil: green nanotechnology route, Int. J. Green Nanotechnol. Phys. Chem., 2, 39-46(2010).

https://doi.org/10.1080/19430876.2010.532421

Karthikeyan, S., Kalaiselvan, S., Manorangitham, D. and Maragathamani, S., Morphology and structural studies of multi-walled carbon nanotubes by spray pyrolysis using Madhuca longifolia oil, J. Environ. Nanotechnol., 2, 15-20(2013).

https://doi.org/10.13074/jent.2013.12.132040

Sharma, S., Ranjan, P., Das Gupta, S., Bhati, R. and Majumdar, A., Synthesis of carbon nanotube using olive oil and it’s application in dye sensitized solar cell, Int. J. Renew. Energy Res., 2(2), 274-279(2012).

Suriani, A. B., Azira, A. A., Nik, S. F., Md Nor, R. and Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett., 63(30), 2704-2706(2009).

https://doi.org/10.1016/j.matlet.2009.09.048

Tian, L., Ye, L., Deng, K. and Zan, L., TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity, J. Solid State Chem., 184(6), 1465-1471(2011).

https://doi.org/10.1016/j.jssc.2011.04.014

Wang, W., Poudel, B., Huang, J. Y., Wang, D. Z., Kunwar, S. and Ren, Z. F, Synthesis of gram-scale germanium nanocrystals by a low-temperature inverse micelle solvothermal route, Nanotechnology, 16(8), 1126-1129(2005).

https://doi.org/10.1088/0957-4484/16/8/024

Yang, Z., Chen, X., Nie, H., Zhang, K., Li, W., Yi, B. and Xu, L., Direct synthesis of ultra long carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism, Nanotechnology, 19(8), 85606(2008).

https://doi.org/10.1088/0957-4484/19/8/085606

Contact Us

Powered by

Powered by OJS