Focusing Properties of Spirally Polarized Axisymmetric QBG Beams with 4pi Configuration
J. Environ. Nanotechnol., Volume 5, No 1 (2016) pp. 26-32
Abstract
4Pi Focusing properties of spirally polarized axisymmetric QBG beams are investigated theoretically by vector diffraction theory. Calculation results show that intensity distribution in focal region can be altered considerably by beam parameter μ and spiral parameter C that indicates polarization spiral degree.By properly tuning the beam parameter and spiral parameter generated multiple focal structure for potential application are also dicussed.The author expect such an investigation is worth will for optical manipulation and material processing technologies.
Full Text
Reference
Bokor, N. and Davidson, N., Toward a spherical spot distribution with 4π focusing of radially polarized light, Opt. Lett., 29(17), 1968-1970(2004).
https://doi.org/10.1364/OL.29.001968
Caron, C. F. R., Potvliege, R. M., Bessel-modulated gausian beams with quadratic radial dependence, Opt. Commun., 164(1-3), 83-93(1999).
https://doi.org/10.1016/S0030-4018(99)00174-1
Chen, Z. and Zhao, D., 4Pi focusing of spatially modulated radially polarized vortex beams, Opt. Lett., 37(8), 1286-1288(2012).
https://doi.org/10.1364/OL.37.001286
Dorn, R., Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91, 233901-233908 (2003).
https://doi.org/10.1103/PhysRevLett.91.233901
Hao, B., Spirally in homogeneous polarization and its application in beam shaping, Dissertation at University Minnesota, 2007.
Hell, S. and Stelzer, E. H. K., Properties of a 4Pi confocal fluorescence microscope, J. Opt. Soc. Am. A., 9(12), 2159-2166(1992).
https://doi.org/10.1364/JOSAA.9.002159
Hricha, Z. and Belafhal, A., Focal shift in the axisymmetric Bessel-modulated gaussian beam, Opt. Commun., 255(4-6), 235-240(2005).
https://doi.org/10.1016/j.optcom.2005.06.025
Kozawa, Y., Hibi, T., Sato, A., Horanai, H., Kurihara, M., Hashimoto, N., Yokoyama, H., Nemoto, T. and Sato, S., Creation of polarization gradients from superposition of counter propagating vector LG beams, Opt. Express, 19(17), 15947-15954(2011).
https://doi.org/10.1364/OE.19.015947
Li, X., Lan, T. -H., Tien, C. -H. and Gu, M., Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam, Nat. Commun., 3, 998(2012).
https://doi.org/10.1038/ncomms2006
Sick, B., Hecht, B. and Novotny, L., Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett., 85(21), 4482-4485(2000).
https://doi.org/10.1103/PhysRevLett.85.4482
Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nat. Photonics., 2, 501-505(2008).
https://doi.org/10.1038/nphoton.2008.127
Wang, J., Chen, W. and Zhan, Q., Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams, J. Opt., 14(5), 055004(2012).
Wang, X. and Lü, B., The beam propagation factor and far-field distribution of Bessel modulated gaussian beams, Opt. Quant. Electron., 34(11), 1071-1077(2002).
https://doi.org/10.1023/A:1021160303678
Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express, 7(2), 77-87(2000).
https://doi.org/10.1364/OE.7.000077
Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photon., 1(1), 1-57(2009).
https://doi.org/10.1364/AOP.1.000001
Zhang, Y., Suyama, T. and Ding, B., Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam, Opt. Lett., 35, 1281-1283(2010).
https://doi.org/10.1364/OL.35.001281
Ziyang Chen and Daomu Zhao, 4Pi focusing of spatially modulated radially polarized vortex beams, Opt. Lett., 37(8), 1286-1288(2012).