A Short Review of SAW Sensors
J. Environ. Nanotechnol., Volume 4, No 4 (2015) pp. 15-22
Abstract
Surface Acoustic Waves (SAWs) are elastic waves travelling along the surface of solid piezoelectric materials with amplitude that decays exponentially with depth. Using an Interdigital Transducer (IDT), these waves can be demonstrated and reproduced in the laboratory in devices called SAW devices. Such devices find many applications as delay lines, filters, resonators and sensors. The present paper provides a snapshot review and a description of the function, operation and latest technical advancements seen in SAW sensors over the period from 1997-2015. SAW Sensors using different design and operating principles have been reported in this paper. Compared with other currently available types of sensors, the SAW – based sensors have many advantages like: high sensitivity, quick response time, easy predictability and good stability. Keywords: Surface Acoustic wave, Interdigital Transducer.
Full Text
Reference
Andrew, R. M., Mlsna, T. E., Chung, R., Nguyen, V. K. and Stepnowski, J., Design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds, Sens. Actuators B, 65, 5-9(2000).
doi:10.1016/S0925-4005(99)00351-2
Atashbar, M. Z., Bazuin, B. J., Simpeh, M. and Krishnamurthy, S., 3D FE simulation of H2 SAW gas sensor, Sens. Actuators B, 111-112, 213-218(2005).
doi:10.1016/j.snb.2005.06.054
Banu Priya, R., Venkatesan, T., Pandiyarajan, G. and Haresh, M. P., SAW Devices - A Comprehensive Review, J. Environ. Nanotechnol., 3, 106-115(2014).
doi:10.13074/jent.2014.09.143101
Beck, K., Kunzelmann, T., Von Schickfus, M. and Hunklinger, S., Contactless surface acoustic wave gas sensor, Sens. Actuators A, 76, 103-106(1999).
doi:10.1016/S0924-4247(98)00359-8
Bostan, C. G., Serban, B., Avramescu, V. and Georgescu, I., Simulation of SAW gas sensors with polymer layers using the finite element method, In: CAS 2010 Proceedings (International Semiconductor Conference). IEEE, 503-506(2010).
doi:10.1109/SMICND.2010.5650470
Cenni, F., Cazalbou, J., Mir, S. and Rufer, L., Design of a SAW-based chemical sensor with its microelectronics front-end interface, Microelectron. J., 41, 723-732(2010).
doi: 10.1016/j.mejo.2010.06.008
Chevallier, E., Scorsone, E. and Bergonzo, P., Modified diamond nanoparticles as sensitive coatings for chemical SAW sensors, Procedia Chem., 1, 943-946(2009).
doi: 10.1016/j.snb.2010.01.042
Du, X., Ying, Z., Jiang, Y., Liu, Z., Yang, T. and Xie, G., Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection, Sens. Actuators B, 134, 409-413(2008).
doi: 10.1016/j.snb.2008.05.016
Fan, L., Ge, H., Zhang, S., Zhang, H. and Zhu, J., Optimization of sensitivity induced by surface conductivity and sorbed mass in surface acoustic wave gas sensors, Sens. Actuators B, 161, 114-123(2012).
doi: 10.1016/j.snb.2011.09.077
Fang, M., Vetelino, K., Rothery, M., Hines, J. and Frye, G. C., Detection of organic chemicals by SAW sensor array, Sens. Actuators B, 56, 155-157(1999).
doi: 10.1016/S0925-4005(99)00176-8
Grate, J. W., Acoustic wave microsensor arrays for vapor sensing, Chem. Rev., 100, 2627-2648(2000).
doi: 10.1021/cr980094j
Hagleitner, C., Lange, D., Hierlemann, A., Brand, O. and Baltes, H., CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors, IEEE J. Solid-State Circuits, 37, 1867-1878(2002).
doi: 10.1109/JSSC.2002.804359
Haresh, M. P., Nimal, A. T., Sharma, M., Gopalakrishnan, P., Mittal, U. and Elango, P., MATLAB Modelling of a Surface Acoustic Wave (SAW) Delay Line for Sensor Applications, 1–6(2010).
Haresh, M. P., Sharma, M. U., Nimal, A. T. and Rajesh K. B., Impulse Modelled Response of a 300 MHz ST-Quartz SAW Device For Sensor Specific Applications, J. Environ. Nanotechnol., 2, 15-21(2013).
doi:10.13074/jent.2013.02.nciset33
Ho, C. K., Lindgren, E. R., Rawlinson, K. S., Mcgrath, L. K. and Jerome, L., Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds, Sensors, 3(7), 236-247(2003).
doi: 10.3390/s30700236
Hsu-Chao Hao, Tai-Hsuan Lin, Mei-Ching Chen and Da-Jeng Yao, A chemical surface acoustic wave(SAW) sensor array for sensing different concentration of NH3, In: 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 1092-1096(2010).
Korsah, K., Ma, C. L. and Dress, B., Harmonic frequency analysis of SAW resonator chemical sensors: Application to the detection of carbon dioxide and humidity1 Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by Lockheed, Sens. Actuators B, 50, 110-116(1998).
doi: 10.1016/S0925-4005(98)00163-4
Levit, N., Pestov, D. and Tepper, G., High surface area polymer coatings for SAW-based chemical sensor applications, Sens. Actuators B, 82, 241-249.
doi:10.1016/S0925-4005(01)01018-8
McGill, R. A., Chung, R., Chrisey, D. B., Dorsey, P. C., Matthews, P., Pique, A., Mlsna, T. E. and Stepnowski, J. L., Performance optimization of surface acoustic wave chemical sensors, IEEE Trans Ultrason. Ferroelectr. Freq. Control, 45, 1370-1380(1998).
doi: 10.1109/58.726464
Meulendyk, B. J., Wheeler, M. C. and Pereira da Cunha, M., Hydrogen fluoride gas detection mechanism on quartz using SAW sensors, IEEE Sens. J., 11, 1768-1775(2011).
doi:10.1109/JSEN.2010.2095838
Moriizumi, Saitou and Nomura, Multi-channel SAW chemical sensor using 90 MHz SAW resonator and partial casting molecular films, In: Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, IEEE, 1, 499-502(1994).
Nomura, T., Takebayashi, R. and Saitoh, A., Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 45, 1261-1265(1998).
doi: 10.1109/58.726452
Penza, M., Aversa, P., Cassano, G., Wlodarski, W. and Kalantar-Zadeh, K., Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating, Sens. Actuators B, 127, 168-178(2007).
doi: 10.1016/j.snb.2007.07.028
Penza, M., Rossi, R., Alvisi, M., Aversa, P., Cassano, G., Suriano, D., Benetti, M., Cannata, D., Di Pietrantonio, F. and Verona, E., SAW Gas sensors with carbon nanotubes films. In: 2008 IEEE Ultrasonics Symposium. IEEE, 1850–1853(2008).
Plotner, M., Berger, O., Stab, H., Fischer, W-J., Konig, P., Beyerlein, D. and Schwarz, A., Miniaturized gas monitoring system employing several SAW sensors, Proc 2001 IEEE Int Frequncy Control Symp PDA Exhib (Cat No01CH37218), 520–527.
doi: 10.1109/FREQ.2001.956334(2001).
Powell, D., A., Kalantar-Zadeh, K., Wlodarski, W. and Ippolito, S. J., Layered surface acoustic wave chemical and Bio-Sensors, Encycl. Sensors California, USA Am. Sci. Publ. Stevenson Ranch X:1–18(2006).
Raj, V. B., Singh, H., Nimal, T., Sharma M, U. and Gupta, V., Oxide thin films (ZnO, TeO2, SnO2 and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sens. Actuators B, 178, 636-647(2013).
doi: 10.1016/j.snb.2012.12.074
Raj, V. B., Singh., H, Nimal, A. T., Tomar, M., Sharma, M. U. and Gupta, V., Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor, Sens. Actuators B, 207, 375-382(2015).
doi: 10.1016/j.snb.2014.10.015
Rapp, M., Reibel, J., Voigt, A., Balzer, M. and Bülow O., New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators, Sens. Actuators B, 65, 169-172(2000).
doi:10.1016/S0925-4005(99)00321-4
Rayleigh, L., On waves propagated along the Plane surface of an elastic solid, Proc. London Math. Soc., 1(17), 4–11(1885).
doi: 10.1112/plms/s1-17.1.4
Reibel, J., Stier, S., Voigt, A. and Rapp, M., Influence of Phase Position on the Performance of Chemical Sensors Based on SAW Device Oscillators, Anal. Chem., 70, 5190-5197(1998).
doi: 10.1021/ac9805504
Roh, Y., Lee, Y. and Kim, H., Development of a SAW microgas sensor for monitoring SO2 gas, J. Acoust. Soc. Am., 108, 2599(2000).
doi: 10.1121/1.4743675
Rossignol, J., Barochi, G., de Fonseca, B., Brunet, J., Bouvet, M., Pauly, A. and Markey, L., Microwave-based gas sensor with phthalocyanine film at room temperature, Sens. Actuators B., 189, 213-216(2013).
doi: 10.1016/j.snb.2013.03.092
Sadek, A. Z., Wlodarski, W., Shin, K., Kaner, R. B. and Kalantar-zadeh, K., A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite, Nanotechnology, 17, 4488-4492.
doi: 10.1088/0957-4484/17/17/034
Scherr, H., Scholl, G., Seifert, F. and Weigel, R., Quartz pressure sensor based on SAW reflective delay line, IEEE Ultrason. Symp. Proc., 1, 347-350(1996).
doi: 10.1109/ULTSYM.1996.583989(1996).
Shen, Y. T., Shen, C. Y. and Wu, L., Design of ST-cut quartz surface acoustic wave chemical sensors, Sens. Actuator B, 85, 277-283(2002).
doi:10.1016/S0925-4005(02)00143-0
Varadan, V. V., Varadan, V. K., Bao, X., Ramanathan, S. and Piscotty, D., Wireless passive IDT strain microsensor, Smart Mater. Struct., 6, 745-751(1997).
doi:10.1088/0964-1726/6/6/012
Venkatesan, T. and Haresh, M. P., Surface Acoustic Wave Devices and Sensors- A short Reviewon design and modelling by Impulse Response, J. Environ. Nanotechnol., 2, 8190(2013).
doi: 10.13074/jent 2013.09.132034
White, R. M. and Voltmer, F. W., Direct Piezoelectric Coupling To Surface Elastic Waves, Appl. Phys. Lett,. 7, 314(1965).
doi:10.1063/1.1754276
Wohltjen, H., Mechanism of operation and design considerations for surface acoustic wave device vapour sensors, Sens. Actuators B, 5, 307-325(1984).
doi:10.1016/0250-6874(84)85014-3
Wohltjen, H. and Dessy, R., Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal. Chem., 51, 1458-1464(1979).
doi: 10.1021/ac50045a024
Yang, X., Johnson, S., Shi, J., Holesinger, T. and Swanson, B., Polyelectrolyte and molecular host ion self-assembly to multilayer thin films: An approach to thin film chemical sensors, Sens. Actuators B, 45, 87-92(1997).
doi: 10.1016/S0925-4005(97)00274-8
Yasin, F. M., Tye, K. F. and Reaz, M. B. I., Design and implementation of interface circuitry for cmos-based saw gas sensors. In: 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, IEEE, 161-164(2005).