Nanotoxicology - Health and Environmental Impacts: A Review
J. Environ. Nanotechnol., Volume 4, No 3 (2015) pp. 55-73
Abstract
Nanotechnology is the new field of technological innovation that transformed the industrial development. This revolution emphasized the large scale production of nano-based materials. The novel behaviour of nanoparticle is dominated by quantum mechanics, materials confinement in small structures, large surface to volume ratio and other unique properties, phenomena and processes. The consumption of products containing nanomaterial is increasing and represents a risk to health and the environment. Understanding the toxicity of engineered nanomaterial and nano-based products is important for human environmental health and safety. Nanotoxicology, is intended to define the toxicological activities of potential nanomaterial and their products to determine whether and to what extent these materials pose threat to environment and human health. In this context the fate of nanoparticles in environment with reference to air, water, soil has been studied. Health aspects of nanomaterials have also been cited including nanomaterials effect on different organ systems. The main objective of present review is to focus on the effect of nano materials on health and environment and to discuss the sources, fate, distribution, deposition, bioavailability and toxicity of engineered nanomaterial.
Full Text
Reference
Abbott, L. C. and Maynard, A. D., Exposure assessment approaches for engineered nanomaterials. Risk Anal, 30(11), 1634-44(2010).
doi:10.1111/j.1539-6924.2010.01446.x
Abdelhalim, M. A. K., Exposure to gold nanoparticles produces cardiac tissue damage that depends on the size and duration of exposure, Lipids in Health and Disease, (2011).
doi:10.1186/1476-511X-10-205
Ajayan, P. M. and Zhou, O. Z., Applications of Carbon Nanotubes. Topics Appl Phys. 80, 391–425(2001).
doi:10.1007/3-540-39947-x_14
Aleksandr, B. S., Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities (2012).
doi:10.3109/17435390.2012.739664.
Amy, K. M. and Kent, E. P., Health effects of inhaled engineered and incidental nanoparticles. Critical Reviews in Toxicology, 39(8), 629-658(2009).
doi:10.1080/10408440903133788
Bakand, S. H. and Dechsakulthorn, F., Nanoparticles: a review of particle toxicology following inhalation exposure, Inhalation Toxicology, 24(2), 125–135(2012).
doi:10.3109/08958378.2010.642021.
Balbus, J., Hazard Assessment for Nanoparticles: Report from an Interdisciplinary Workshop, Environmental Health Perspectives, 115, 1654-1659(2007).
Bermudez, E., Pulmonary responses of mice, rats and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicological Sciences, 77, 347 – 357(2004).
doi:10.1093/toxsci/kfh019
Bernd, N. and Thomas, D. B., Occurrence, behaviour and effects of nanoparticles in the environment, Environmental Pollution, 150(2007).
doi:10.1016/j.envpol.2007.06.006
Besley, J., Current research on public perceptions of nanotechnology, Emerging Health Threats Journal, 3, 8(2010).
doi:10.3134/ehtj.10.164
Bleckmann, C., Cellular interaction of different forms of aluminium nanoparticles in rat alveolar macrophages, J. Phy. Chem., B, 111(25), 6(2007).
doi:10.1021/jp068938n
Boczkowski, J. and Hoet, P., What's new in nanotoxicology? Implications for public health from a brief review of the 2008 literature, Nanotoxicology, 4(1),1-14(2010).
doi:10.3109/17435390903428844
Buford, C., Hamilton, R. F. and Holian, A., A comparison of dispersing media for various engineered carbon nanoparticles, Particle and Fibre Toxicology, 4(6), (2007).doi:10.1186/1743-8977-4-6
Burgi, R. J. and Pradeep, T., Societal implications of nanoscience and nanotechnology in developing countries, Current Science, 90(5), 10, 645(2006).
doi:10.1007/s11051-004-2336-5
Chang, Y. N., Zhang, M., Xia, L., Zhang, J. and Xing, G., The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles, Materials, 5, 2850-2871(2012).
doi:10.3390/ma5122850.
Chapman, R., Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes, Environmental Health Perspectives, 115(3), 6(2007).
Chen, R., Ratnikova, T. A., Stone, M. B., Lin, S., Lard, M., Huang, G., Hudson, J. S. and Ke, P, U., Differential uptake of carbon nanoparticles by plant and mammalian cells, Small., 6(5), 612–617(2010).
doi:10.1002/smll.200901911
Chidambaram, M. and Krishnasamy, K., Nanotoxicology: Toxicity of engineered nanoparticles and approaches to produce safer nanotherapeutics, Int. J. Pharm. Sci., 2, 4, 117-122(2012).
Clift, M. J., Gehr, P. and Rutishauser, B. R., Nanotoxicology: A perspective and discussion of whether or not in vitro testing is a valid alternative, Arch. Toxicol., 85, 723–731, (2011).
doi:10.1007/s00204-010-0560-6.
Cobb, M. D. and Macoubrie, J., Public perception about Nanotechnology: Risks, benefits and trust, J. Nanopart, Res., 6, 395–405(2004).
doi:10.1007/s11051-004-3394-4
Colvin, V., The potential environmental impact of engineered nanomaterial’s, Nat. Biotechnol., 21(10); 1166-1170(2003).
doi:10.1038/nbt875
Colvin, V., Responsible nanotechnology, Looking beyond the good news, 1-4(2008).
Danail, R. H., Alex, Z., Christy, F. and Panagiotis, I., (2012) A weight of evidence approach for hazard screening of engineered nanomaterial’s. Nanotoxicology.
doi:10.3109/17435390.2012.750695
Danail, R. H., Stefania, G., Andrea, C. and Antonio, M., Risk assessment of engineered nanomaterial’s: A review of available data and approaches from a regulatory perspective. Nanotoxicology, 6(8), 880-898(2012).
doi:10.3109/17435390.2011.626534
Das, T. K. and Prusty, S., Recent advances in applications of graphene, Int. J. Chemical Sci. Appl., 4(1), 39-55(2013).
doi:10.1039/c5py00777a
Dawson, K. A., Anna, S. and Iseult, L., Nanotoxicology, Nanoparticles reconstruct lipids; Nature’s Nanotech., (2008).
doi:10.1038/nnano.426
Deguchi, S. H., Koki, M. and Sada-atsuYamazaki, T., Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies, Chemical Research in Toxicology, 20(6), 4(2007).
doi:10.1021/tx6003198
DeJong, W. H. and Borm, P. J., Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine., 3(2), 133-49(2008).
Dietze, K. J. and Herth, S., Plant nanotoxicology. Trends in Plant Science, 16(11), 82–589(2011).
doi:10.1016/j.tplants.2011.08.003
Dionysion, D. D., Environmental Application and Implication of Nanotechnology and Nanomaterial. J. Environ. Eng., 723-724(2004).
doi:10.1061/(ASCE)0733-9372(2004)130:7(723)
Dobrovolskaia, M. A. and McNeil, S. E., Immunological properties of engineered nanomaterial’s. Nat Nanotechnol, 2(8):469-78(2007).
doi:10.1038/nnano.2007.223
Donaldson, K., Nanotoxicology. Occupational and Environmental Medicine, 61(9), 727–728(2004).
doi:10.1136/oem.2004.013243
Donaldson, K., Mills, N., Newby, D, E., MacNee, W. and Stone, V., Toxicology of Nanoparticles in Environmental Air Pollution, Nanotechnologies for the Life Sciences, (2007).
doi:10.1002/9783527610419.ntls0059
Donaldson, K. and Seaton, A., A short history of the toxicology of inhaled particles, Particle and Fibre Toxicology, 913, (2008).
doi:10.1186/1743-8977-9-13
Donaldson, K., Stone, V., Clouter, A. and Renwick, L., Ultrafine Particles, Occupational and Environmental Medicine, 58(3), 211–216(2001).
doi:10.1136/oem.58.3.211
Donaldson, K. and Tran, C. L., Inflammation caused by particles and fibers, Inhalation Toxicology, 14(1), 5–27(2002).
doi:10.1080/089583701753338613
Etzkowitz, H., Nano-science and society: Finding a social basis for science policy, In: Societal Implications of Nanoscience and Nanotechnology, ed. By Roco, M. C., Bainbridge, W. S., Kluwer, Dordrecht, 121–128(2001).
Fischer, H. C., Chan, W. C., Nanotoxicity: The growing need for in vivo study, Curr. Opin. Biotechnol, 18(6), 565-71(2007).
doi:10.1016/j.copbio.2007.11.008
Flemming, R., Exposure, Health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Critical Reviews in Toxicology, 41(3), 213-229(2011).
doi:10.3109/10408444.2010.529105
Francisco, B., Manuel, A., Jone, U. and Jesus, S., Reported nanosafety practices in research laboratories worldwide. Nature’s Nanotech., (2010).
doi:10.1038/nnano.
Garnett, M. C. and Kallinteri, P., Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine, 56, 307–311(2006).
doi:10.1093/occmed/kql052.
Gevdeep, B., Nanoparticles can cause DNA damage across a cellular barrier, 313(2009).
doi:10.1038/nnano.
Günter, O., Vicki, S. and Ken, D., Toxicology of nanoparticles: A historical perspective, 1(1), 2-25(2007).
doi:10.1080/17435390701314761
Gupta, S, M. and Tripathi, M., A review of TiO2 nanoparticles, Physical Chemistry, 56(16), 1639–1657(2011).
doi:10.1007/s11434-011-4476.
Handy, R, D. and Shaw, B, J., Toxic effects of nanoparticles and nanomaterial’s: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk and Society, 9(2), 125-144(2007).
doi:10.1080/13698570701306807
Hansen, S. F., Michelson, E. S., Kamper, A., Borling, P., Stuer-Lauridsen, F. and Baun, A., Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 17(5), 438-47(2008).
doi:10.1007/s10646-008-0210-4.
Hawthorne, J., De la Torre Roche, R., Xing, B., Newman, L, A., Ma, X., Majumdar, S., Gardea-Torresdey, J. and White, J, C., Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain, Environ. Sci. Technol., 18, 48(22), 13102-9(2014).
doi:10.1021/es503792f.
Health Effects Institute Working Group. Diesel exhaust: a critical analysis of emissions, exposureand health effects. Special Report of the Institute’s Diesel Working Group. Project on Emerging Nanotechnologies is supported by The Pew Charitable Trusts(1995).
Helinor, J., Giulio, P. and Stefano, Z., Engineered nanomaterial risk, Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges, Critical Reviews in Toxicology, 43(1), 1-20(2012).
doi:10.3109/10408444.2012.738187
Hirose, A., Research strategy for evaluation methods of the manufactured nanomaterial’s in NIHS and importance of the chronic health effects studies. Int. J. Nanomedicine., (127), 15-25(2009).
Hoet, P., Legiest, B., Geys, J. and Nemery, B., Do nanomedicines require novel safety assessments to ensure their safety for long-term human use? Drug Saf., 32(8), 625-36(2009).
doi: 10.2165/00002018-200932080-00002
Holden, Patricia A., Roger M. Nisbet, Hunter S. Lenihan, Robert J. Miller, Gary N. Cherr, Joshua P. Schimel, and Jorge L. Gardea Torresdey, Ecological Nanotoxicology: Integrating Nanomaterial Hazard Considerations Across the Subcellular, Population, Community, and Ecosystems Levels, Accounts of Chemical Research(201 3).
doi: 10.1021/ar300069t
Holl. M. M. B., Nanotoxicology: a personal perspective, Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology(2009).
doi:10.1002/wnan.27.
Holsapple, M. P., Research strategies for safety evaluation of nanomaterial’s, part II: toxicological and safety evaluation of nanomaterial’s, current challenges and data needs. Toxicol. Sci., 88(1), 12-7(2005).
doi: 10.1093/toxsci/kfi293
Howard, M. K. and Debra, L. L., Smaller is not always better: nanotechnology yields nanotoxicology, Am. J. Physiol. Lung. Cell Mol. Physiol., 289, L696–L697(2005).
doi: 10.1152/ajplung.00277.2005
Hubbs, A. F., R. R. Mercer, S. A. Benkovic, J. Harkema, K. Sriram, D. Schwegler-Berry, M. P. Goravanahally, T. R. Nurkiewicz, V. Castranova, and L. M. Sargent. "Nanotoxicology--A Pathologist's Perspective", Toxicologic Pathology, (2011).
doi:10.1177/0192623310390705
Hubert, R. and Birgit, S. K., The European commission's recommendation on the definition of nanomaterial makes an impact, Nanotoxicology., (2012).
doi: 10.3109/17435390.2012.724724
Isabella, D. A., Flavia, B., Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells, Nanotoxicology.,(2012).
doi:10.3109/17435390.2012.741724
Jamiesona, T., Bakhshia, R., Petrovaa, D., Pococka R., Imanib, M. and Seifalian, A. M., Biological applications of quantum dots
Biomaterials., 28, 4717 – 4732(2007).
doi:10.1016/j.biomaterials.2007.07.014
Jessica, P. R., Mark, F. C., Arnold, R. B. and Jeanette, K., Inhaled carbon nanotubes reach the sub pleural tissue in mice, Nature’s Nanotech., (2009).
doi:10.1038/nnano.305.
Jin, S. K., Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles, Nanotoxicology.,(2012).
doi:10.3109/17435390.2012.676099
Joachim, C., To be or not to be nano, Nature Materials, 4,107(2005).
doi:10.1038/nmat1319
Jonathan, G., Ananth, T. and George, D. D., DNA damage of macrophages induced by metal nanoparticulates using an air–liquid interface exposure model, Nanotoxicology.,(2012).
doi: 10.3109/17435390.2012.682354
Jones, M. A., Gunsolus, I. L., Murphy, C. J. and Haynes, C. L., Toxicity of Engineered Nanoparticles in the Environment, Anal. Chem., 85, 3036 −3049(2013).
doi:10.1021/ac303636s
Judy, J. D., Unrine, J. M. and Bertsch, P. M., Evidence for biomagnification of gold nanoparticles within a terrestrial food chain, Environmental Science and Technology, 45, 776-781(2011).
doi:10.1021/es103031a
Kagan, V. E., Bayir, H., Shvedova, A. A., Nanomedicine and nanotoxicology: two sides of the same coin, Nanomedicine, 1(4), 313(2005).
doi:10.1016/j.nano.2005.10.003
Kevin, L. and Dreher., Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles, Toxicological Sciences., 77, 3–5(2004).
doi: 10.1093/toxsci/kfh041
Kevin, W. P., Maria, P., Brij, M. M. and Stephen, M. R., Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies, 1(1), 42-51(2007).
doi:10.1080/17435390701314902
Khan, A. K., Rashid, R., Murtaza, G. and Zahra, A., Gold Nanoparticles: Synthesis and Applications in Drug Delivery, Tropical Journal of Pharmaceutical Research, 13(7), 1169-1177(2014).
doi:10.4314/tjpr.v13i7.23
Khara, D. G., Igor, L., Steffen, F. H., Anders, B., Environmental risk analysis for nanomaterial’s: Review and evaluation of frameworks, Nanotoxicology, 6(2), 196-212(2012).
doi:10.3109/17435390.2011.569095
Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D. and Lyon, D. Y., Nanomaterials in the environment: behavior, fate, bioavailability and effects, Environ. Toxicol. Chem., 27(9), 1825-51(2008).
doi: 10.1897/08-090.1
Kołodziejczak-Radzimska, A. and Jesionowski, T., Zinc oxide-From synthesis to application: A Review, Materials., 7, 2833-2881(2014).
doi:10.3390/ma7042833
Lewicka, Z. A. "The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens", Journal of Nanoparticle
Research, (2011).
doi:10.​1007/​s11051-011-0438-4
Lin, D. and Xing, B., Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol., 42 (15), 5580–5585(2008).
doi: 10.1021/es800422x
Linkov, I. Nanotoxicology and nanomedicine: making hard decisions, Nanomedicine: Nanotechnology, Biology, and Medicine,200806
doi:10.1016/j.nano.2008.01.001
Lioy, P. J., Nazarenko, Y., Han, T. W., Lioy, M. J. and Mainelis, G., Nanotechnology and exposure science: what is needed to fill the research and data gaps for consumer products. Int. J. Occup. Environ. Health., 16(4), 378-87(2010).
doi: 10.1179/107735210799160057
Logothetidis, S., Nanostructured Materials and their applications, NanoScience and Technology.,
doi: 10.1007/978-3-642-22227-6 1.
Lonkar, S. P. and Abdala, A. A., Applications of graphene in catalysis, Thermodyn. Catal., 5, 2(2014).
doi: 10.4172/2157-7544.1000132
Manke, A., Wang, L. and Rojanasakul, Y., Mechanisms of nanoparticle-induced oxidative stress and toxicity, BioMed Research International., 942916, 15(2013).
doi: 10.1155/2013/942916.
Marina, A. D., Dori, R. G. and James, L. W., Evaluation of nanoparticle immunotoxicity, Nature’s Nanotech., (2009).
doi:10.1038/nnano.175.
Marina, A. D. and Scott, E. M., Immunological properties of engineered nanomaterial’s, Nature’s Nanotech., (2007).
doi: 10.1038/nnano. 223
Martin, S., Nanoecotoxicology: Environmental risks of nanomaterial’s, Nature’s Nanotech., (2008).
doi:10.1038/nnano.145.
Masanori, H., Hiroko, F., Shigehisa, E. and Junko, M., Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2, Inhalation Toxicology, 24(7), 391-400(2012).
doi: 10.3109/08958378.2012.682321.
Maxine, M., Environmental, health and safety issues: Nanoparticles in the real world, Nature’s Nanotech., (2011).
doi:10.1038/nnano.169
Maynard, A. D., Warheit, D. B. and Philbert, M. A., The new toxicology of sophisticated Materials, Nanotoxicology and Beyond, Toxicol. Sci., 120, S109-S129(2011).
doi: 10.1093/toxsci/kfq372.
McKinney, W., Jackson, M. and Sager, T. M., Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles, Inhalation Toxicology., 24(7), 447-457(2012).
doi: 10.3109/08958378.2012.685111.
Meike, L. S., Nozomi, N., Corrine, R. D. and Nadine, K., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nature’s Nanotech., (2008).
doi:10.1038/nnano.68.
Mélanie, A., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature’s Nanotech., (2009). doi:10.1038/nnano.242.
Merel, J. C. and Richard, D. H., C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus, Nanotoxicology, (2012).
doi: 10.3109/17435390.2012.668569
Mitka, M., Committee calls for framework to assess the safety of nanotechnology materials, JAMA, 307(11), 1123-4(2012).
doi: 10.1001/jama.2012.289
Moor, J. and Weckert, J., Nanoethics: Assessing the nanoscale from an ethical point of view, Discovering the Nanoscale, Amsterdam: IOS Press(2004).
Moore, R., Nanomedicine and risk: further perspectives, Med. Device Technol., 18(6), 28-9(2007).
Mueller, N. C., Braun, J., Bruns, J., ÄŒerník, M., Rissing, P., Rickerby, D. and Nowack, B., Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res., 19, 550–558(2012).
doi: 10.1007/s11356-011-0576-3.
Nanotoxicology and in vitro studies: The need of the hour, Toxicology and Applied Pharmacology, doi:10.1016/j.taap.2011.11.010
National Science Foundation. Societal Implications of Nanoscience and Nanotechnology, USA National Science Foundation(2001).
doi:10.1007/s11051-004-2336-5
Nel, A., Atmosphere, Air Pollution-Related Illness: Effects of Particles. Science, 308(5723), 804–806(2005).
doi: 10.1126/science.1108752
Oberdorster, E., Manufactured nanomaterial’s (Fullerenes, C60) induce oxidative stress in the brain of Juvenile Largemouth Bass, Environmental Health Perspectives, 112, 1058-1062(2004).
doi:10.1289/ehp.7021
Oberdörster, G., Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology, J. Intern. Med., 267(1):89-105(2010).
doi: 10.1111/j.1365-2796.2009.02187.x
Oberdorster, G., Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology, 16(6–7):437–445(2004).
doi: 10.1080/08958370490439597
Oberdorster, G., Oberdorster, E. and Oberdorster, J., Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839(2005).
Oberdorster, G. and Utell, M. J., Ultrafine particles in the urban air: To the respiratory tract and beyond? Environmental Health Perspectives, 110(8):A440–A441(2002).
O'Brien, N. and Cummins, E., Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns, Hum. Ecol. Risk Assess, 14(3):568-92(2008).
Paul, A. S. and Fabio, S., Ethical and Scientific Issues of Nanotechnology in the workplace(2010).
Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., De la, R. G., Hong, J. and Gardea-Torresdey, J. L., Nanomaterials and the environment: A review for the biennium 2008-2010, J. Hazard Mater., 186:1-15(2010).
Poonam, T. and Sheefali, M., In vitro methods for Nano toxicity Assessment: Advantages and Applications, Archives of Applied Science Research, 3 (2):389-4(2011).
Popov, V. N., Carbon nanotubes: properties and application, Materials Science and Engineering R 43:61–102(2004).
Powell, M. C., "New risk or old risk, high risk or no risk? How scientists' standpoints shape their nanotechnology risk frames", Health Risk & Society(2007)
Renata, B. and Harald, K., Nanoecotoxicology: Nanoparticles at large, Nature’s Nanotech., (2008).
doi:10.1038/nnano.113.
Resnik, D. B.. "Ethical issues in clinical trials involving nanomedicine", Contemporary Clinical Trials, 200707
Roco., It’s not just about nanotoxicology, Nat Nanotechnol., 4(10):615(2009).
Roco, M. C., Broader Societal Implications of Nanotechnology, J. Nanoparticle Research, 5, 181-189(2003).
Ronald, D. G., Pieter, B., Joke, H. and Jan, M., The changes in hazard classification and product notification procedures of the new European CLP and Cosmetics Regulations, Clinical Toxicology, 48(1), 28-33(2010).
Roszek, B., De Jong, W. H. and Geertsma, R. E., Nanotechnology in medical applications: state-of-the-art in materials and devices. RIVM report 265001001(2005).
Ruhung, W., Generation of toxic degradation products by sonication of Pluronic dispersants: implications for nanotoxicity testing, Nanotoxicology(2012).
Sametband, M., Shweky, I., Banin, U., Mandler, D. and Almog, J., Application of nanoparticles for the enhancement of latent fingerprints, Chem. Commun., 1142–1144(2007).
Schierz, A., Espinasse, B., Wiesner, M. R., Bisesi, J. H., Attwood, T. S. and Ferguson, P. L., Fate of single walled carbon nanotubes in wetland ecosystems, Environ. Sci. Nano., 1, 574-583(2014).
Seabra, A. B., Paula, A. J., deLima, R., Alves, O. L. and Durán, N., Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol., 27 (2), 159–168(2014).
Senić, Z., Bauk, S., Vitorović-Todorović, M., Pajić, N., Samolov, A. and Rajić, D., Application of TiO2 Nanoparticles for obtaining self decontaminating smart textiles, Scientific Technical Review, 61(3-4) 63-72(2011).
Service, R. F., Nanotoxicology, Nanotechnology grows up, Science, 304(5678): 1732–1734(2004).
Service, R. F., Science policy, Priorities needed for nano-risk research and development, Science, 314(5796):45(2006).
Service, R. F., Science policy, Report faults U.S. strategy for nanotoxicology research, Science, 322(5909):1779(2008).
Sharma, H. S., Ali, S. F., Hussain, S. M. and Schlager, J. J., Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J. Nanosci Nanotechnol., 9: 5055-5072(2009).
Shi, J., Peng, C., Yang, Y., Yang, J., Zhang, H., Yuan X. Chen and Hu, T., Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology, 8(2), 179-188(2014).
Shvedova, A. A., Kagan, V. E., Fadeel, B., Annu, R., Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems, Pharmacol Toxicol., 50:63-88(2010).
Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M. and Maffeis, T. G., NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials; 30(23-24):3891-914(2009).
Steffen, H., Andrew, M., Anders, B. and Joel, A. T., Late lessons from early warnings for nanotechnology, Nature’s Nanotech.(2008)
doi:10.1038/nnano.1987.
Stone, V., ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy, Particle and Fibre Toxicology, 11:9(2014).
Suh, W. H., Suslick, K. S., Stucky, G. D. and Suh, Y, H., Nanotechnology, nanotoxicology and neuroscience. Prog. Neurobiol., 87(3):133-70(2009).
Susan, D.,. Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica, Nanotoxicology(2012).
Susan, D., Petra, K., Ruud, J. B. P. and Daniëlle, P. K. L., Presence and risks of nanosilica in food products, Nanotoxicology, 5(3), 393-405(2011).
Tarl, W. P., Nancy, A., Alfred, O., Jeffrey, E. and Xianfeng, C., Quantum dot penetration into viable human skin, 6(2), 173-180(2012).
The Royal Society and the Royal Academy of Engineering (UK).. Nanoscience and Nanotechnologies: Opportunities and uncertainties, (2004).
Thomas, K. and Sayre, P., Research strategies for safety evaluation of nanomaterial’s, Part I: evaluating the human health implications of exposure to nanoscale materials, Toxicol. Sci., 87(2):316-21(2005).
Thomas, K., Research strategies for safety evaluation of nanomaterials, Part VIII: International efforts to develop risk-based safety evaluations for nanomaterials, Toxicological Sciences, (2006).
Tsuji, J. S., Research strategies for safety evaluation of nanomaterial’s, part IV: risk assessment of nanoparticles, Toxicol. Sci., 89(1):42-50(2006).
Unfried, K., Cellular responses to nanoparticles: Target structures and mechanisms, Nanotoxicology, (2007).
Unrine, J. M., Shoults-Wilson, W. A., Zhurbick, O., Bertsch, P. M. and Tsusko, O. V., Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain, Environmental Science and Technology, 46: 9753-9760(2012).
US Environmental Protection Agency. Nanotechnology white paper, Washington, DC: Science Policy Council, U.S. Environmental Protection Agency(2007)..
US Occupational Hazards; “Protecting Nanotech, Workers from Health risks” 1-2(2008)..
USEPA (Environmental Protection Agency), (2003). http:/www.epa.gov/tio/database.
Vicki, S. and Ken, D., Nanotoxicology: Signs of stress. Nature’s Nanotech.,(2006).
doi:10.1038/nnano.69.
Wan Yaacob, W. Z., Kamaruzaman, N. and Samsudin, A. R., Development of nano-zero valent iron for the remediation of contaminated water, Chemical Engineering Transaction., 28, 25-30(2012).
Wason, M. S. and Zhao, J., Cerium oxide nanoparticles: potential applications for cancer and other diseases, Am. J. Transl. Res., 5(2):126-131(2013).
Werlin, J. H,, Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature’s Nanotech, (2010). doi:10.1038/nnano.251.
Yadav, B. C. and Kumar, R., Structure, properties and applications of fullerenes, Int. J. Nanotechnol. and Appl., 2(1):15–24(2008)..
Zholdakova, Z. I,, Sinitsyna, O. O., Kharchevnikova, N. V., General and specific aspects of the toxic properties of nanoparticles and other chemical substances in the context of classical toxicology, Gig Sanit, (6):12-6(2008).
Zhou, W., Ethics of nanobiotechnology at the frontline, Santa Clara Computer and High Technology, L, (2003).
Zhu, Motao, Guangjun Nie, Huan Meng, TianXia, Andre Nel, and Yuliang Zhao, Physicochemical properties determine nanomaterial cellular uptake, Transport and Fate, Accounts of Chemical Research, (2013).