Spray Pyrolysis for Controllable Synthesis of One Dimensional Nanostructured Carbon Materials from Plastic Pyrolytic Oil
J. Environ. Nanotechnol., Volume 4, No 3 (2015) pp. 01-05
Abstract
MWCNTs were synthesized by spray pyrolysis method at 950 °C on quartz substrate from plastic pyrolysis oil derived from waste polystyrene plastic using Argon gas was used as a carrier gas. The chemical compound composition of the plastic pyrolysis oil has been determined by Gas Chromatography-Mass Spectroscopy. The GC-MS analysis was conducted on the polystyrene pyrolytic oil to confirm alkanes and alkenes compound. As-grown MWCNTs were characterized by SEM, HR-TEM and Raman spectroscopy. Raman spectroscopy reveals that as grown multiwall carbon nanotubes are well graphitized.
Full Text
Reference
Afre, R. A., Soga, T., Jimbo, T., Kumar, M., Ando, Y. and Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil, Chem. Phys. Lett., 414, 6–10(2005).
doi: 10.1016/j.cplett.2005.08.040
Al-Salem, S. M., Lettieri, P. and Baeyens, J., Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Manage. 29, 2625-2643(2009).
doi:10.1016/j.wasman.2009.06.004
Angulakshmi, V. S., Rajasekar, K., Sathiskumar, C. and Karthikeyan, S., Growth of vertically aligned carbon nanotubes by spray pyrolysis using green precursor-methyl ester of Helianthus annuss oil, New Carbon Mater., 28, 284-288(2013).
doi:10.1016/S1872-5805(13)60082-7
Angulakshmi, V. S., Sathiskumar, C., Karthik, M. and Karthikeyan, S., Synthesis of Multi-walled Carbon Nanotubes from Glycine Max Oil and Their Potential Applications, J. Environ. Nanotechnol., 2, 101-106(2013).
doi:10,13074/jent.2013.02.nciset316
Angulakshmi, V. S., Sivakumar, N. and Karthikeyan, S., Response Surface Methodology for optimizing Process Parameters for Synthesis of Carbon Nanotubes, J. Environ. Nanotechnol., 1, 40-45(2012).
doi:10.13074/jent.2012.10.121019
Azmina, M. Z., Suriani, A. B., Salina, M., Azira, A. A., Dalila, A. R., Rosly, J., Roslan, M. N. and Rusop, M., Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hybrids, 2, 43–63(2012).
doi: 10.4028/www.scientific.net/NH.2.43
Banks, C. E. and Compton, R. G., New electrodes for old from carbon nanotubes to edge plane pyrolytic graphite, Analyst, 131, 15-21(2006).
doi: 10.1039/B512688F
Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A. and Kaleńczuk, R. J., Characterization of carbon nanotubes by Raman spectroscopy, Mater Sci-Poland, 26(2), 433-441 (2008).
Ding, F., Kim Bolton, K. and Arne Rosen, A., Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation, J. Elec. Mat., 35, 207-210(2006).
doi: 10.1007/BF02692437
Dresselhausa, M. S., Dresselhausc, G., Joriob, A., Souza Filhob, A. G. and Saito, R., Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043–2061(2002).
doi:10.1016/S0008-6223(02)00066-0
Ghosh, P., Afre, R. A., Soga, T. and Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett., 61(17), 3768-3770(2007).
doi:10.1016/j.matlet.2006.12.030
Howard, G. T., Biodegredation of polyurethane : A review, Int. Biodeter. Biodegr. 49, 245-252(2002).
doi:10.1016/S0964-8305(02)00051-3
Karthikeyan, S. and Mahalingam, P., Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine Oil at different temperatures, Int. J. Nanotechnol. Appl., 4, 189-197(2010).
Karthikeyan, S. and Mahalingam, P., Synthesis and characterization of multi-walled carbon nanotubes from biodiesel oil: Green nanotechnology route, Int. J. Green Nanotechnol. Phys. Chem., 2, 39-46(2010).
doi: 10.1080/19430876.2010.532421
Karthikeyan, S., Mahalingam, P. and Karthik, M. Large scale synthesis of carbon nanotubes, E-J.Chem., 6, 1-12(2008).
Khan, S., Tripathi, K. N., Aggarwal, M., Tripathi, K., Husain, M. and Khan, Z. H., Field emission properties of Fe70Pt30 catalysed multi-walled carbon nanotubes, J. Experimental Nanoscience, 2(3), 215 –228(2007).
doi:10.1080/17458080701306253
Kiang, C. H., Dresselhaus, M. S., Beyers, R., Bethune, D. S., Vapor-phase self-assembly of carbon nanomaterials, Chem. Phys. Lett., 259, 41- 47(1996).
doi:10.1016/0009-2614(96)00700-2
Kumar, M. and Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor, Chem. Phys. Lett., 374, 521-526(2003).
doi: 10.1007/s11051-012-1016-0
Liu, H., Zhang, Y., Li, R., Sun, X. and Abou-Rachid, H., Thermal and chemical durability of nitrogen-doped carbon nanotubes, J. Nanopart. Res., 14(1016), 1-8(2012).
doi:10.1007/s11051-012-1016-0
Mageswari, S., Jafar Ahamed, A. and Karthikeyan, S., Effect of temperature and flow rate on the yield of multiwalled carbon nanotubes by spray pyrolysis using Cymbopogen flexsuous oil, J. Environ. Nanotechnol., 1, 28-31(2012).
doi: 10.13074/jent.2012.10.121015
Melissa Paradise and Tarun Goswami, Carbon nanotubes – Production and industrial applications, Materials and Design, 28, 1477–1489(2007).
doi:10.1016/j.matdes.2006.03.008
Miskolczi, N., Bartha, L. and Angyal, A., High energy containing fractions from plastic wastes by their chemical recycling, Macromolecular Symposia, 245-246, 599–606(2006).
doi: 10.1002/masy.200651386
Paul, S. and Samdarshi, S. K., A green precursor for carbon nanotube synthesis, New Carbon Mater., 26, 85–88(2011).
doi:10.1016/S1872-5805(11)60068-1
Suriani, A. B., Azira, A. A., Nik, S. F., MdNor, R. and Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett., 63, 2704-2706(2009).
doi:10.1016/j.matlet.2009.09.048
Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Salina, M., Rosmi, M. S., Rosly Roslan Md Nor, J. and Rusop, M., Vertically aligned carbon nanotubes synthesized from waste chicken fat, Materials Letters, 101, 61–64(2013).
doi:10.1016/j.matlet.2013.03.075
Yusop, M. Z. M., Ghosh, P., Yaakob, Y., Kalita, G., Sasase, M., Hayashi, Y. and Tanemura, M., In situ TEM observation of Fe-included carbon nanofiber: Evolution of structural and electrical properties in field emission process, ACS Nano, 11, 9567–9573(2012).
doi: 10.1021/nn302889e
Zobir, S. A. M., Zainal, Z., Keng, C. S., Sarijo, S. H. and Yusop, M., Synthesis of carbon nanohorn–carbon nanotube hybrids using palm olein as a precursor. Carbon, 54, 492–494(2013).
doi:10.1016/j.carbon.2012.11.056