Open Access

Microbial Synthesized Silver Nanoparticles for Decolorization and Biodegradation of Azo Dye Compound

Shreya Modi, Centre for Nano sciences, School of Environment and Sustainable Development Central University of Gujarat, Sector 30, Gandhinagar, GJ, India Bhawana Pathak, Centre for Nano sciences, School of Environment and Sustainable Development Central University of Gujarat, Sector 30, Gandhinagar, GJ, India M. H. Fulekar mhfulekar@yahoo.com
Centre for Nano sciences, School of Environment and Sustainable Development Central University of Gujarat, Sector 30, Gandhinagar, GJ, India


J. Environ. Nanotechnol., Volume 4, No 2 (2015) pp. 37-46

https://doi.org/10.13074/jent.2015.06.152149

PDF


Abstract

Biological approach for silver nanoparticle synthesis using microorganisms like Bacteria, Fungi, algae and plants have received profound interest because of their potential to synthesize nanoparticles of various size, shape and morphology. The present research work focus on bacterial synthesis of silver nanoparticles their efficiency forbioremediation of Congo red dye. Twenty one types of different bacterial species have been isolatedfrom the different industrial waste effluent and bacterial consortium was prepared. Potential silver resistant bacteria were isolated from bacterial consortium using scale up method and identified as Bacillus pumillus by Gram staining, biochemical tests and genome sequencing method. After that Silver nanoparticles were synthesized using potential silver resistant bacteria. Silver nitrate and silver sulfate were used as precursor at different concentration for silver nanoparticle synthesis. Color change from colorless to brownwas observed synthesis of silver nanoparticles was further confirmed by UV Visible spectroscopy. The silver nanoparticles formation was (5-93 nm in size) also confirmed by Transmission electron microscopy, Particle size analyzer, Dynamic light scattering depending on the concentration of silver precursor.In this research, we have shown for the first time the use of Bacillus pumillis for synthesis of silver nanoparticles. Dye decolorization and biodegradation was studiedusing silver nanoparticles, silver resistant bacteria and silver resistant bacteria influced by silver nanoparticles separately. Nano based bioremediation was found 13 % efficient than the microbial remediation. Thus the developed nano-bioremediation technology is biocompatible, simple and reliable method and can be applied to decolorize dye as well as antimicrobial agent.

Full Text

Reference


Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937(1996).

doi:10.1126/science.271.5251.933

Bae, C. H., Nam, S. H. and Park, S. M., Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Applied Surface Science, 197(30), 628–634(2002). 

doi:10.1016/S0169-4332(02)00430-0

Bruchez, M., Moronne, M., Gin, P., Weiss, S., andAlivisatos, A. P.,Semiconductornanocrystals as fluorescent biological labels, Science, 281(5385), 2013–2016(1998).

doi:10.1126/science.281.5385.2013

Haefeli, C., Franklin, C.and Hardy, K., Plasmiddetermined silver resistance in Pseudomonas
stutzeri isolated from a silver mine, J. Bacteriology, 158(1), 389–392(1984).

Coe, S., Woo, W. K., Bawendi, M. andBulovic, V., Electroluminescence from single monolayer of nanocrystals in molecular organic devices, Nature, 420(6917), 800–803(2002).

doi:10.1038/nature01217

Da-Guang, Y., Formation of colloidal silver nanoparticles stabilized by Na+- poly (_-glutamic acid) silver nitrate complex via chemical reduction process, Colloids and Surfaces, 59(5), 171–178(2007).

doi:10.1016/j.colsurfb.2007.05.007

Mallick, K., Witcombb, M. J., &Scurrella, M. S., Selfassembly of silver nanoparticles in a polymer solvent: Formation of a nanochain through nanoscale soldering, Materials Chemistry and Physics, 90(3), 221–224(2005).

doi:10.1016/j.matchemphys.2004.10.030

Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., Mukherjee, P., Appl. Microbial.
Biotechnol., 69(5), 485-492(2006).

doi:10.1007/s00253-005-0179-3

Mehrdad, Khalil, Biological and green synthesis of silver nanoparticles, urkish J. Eng. Env. Sci., 34(7), 281–287(2010).

FaghriZonooz, N., Salouti, M., Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3, Scientia Iranica, 18(6), 1631–1635(2011).

doi:10.1016/j.scient.2011.11.029

Jeevan, P., Ramya, K. and Edith Rena, A.,Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa, Indian J. of Biotech., 11(16),72-76 (2012).

Parashar, U. K., Saxena, S. P., Srivastava, A: Bio inspired synthesis of silver nanoparticles, Dig. J. Nanomat. Biostruct, 4(7), 159–166(2009). 

Petit, C., Lixon, P., and Pileni, M. P., In situ synthesis of silver nanocluster in AOT reverses micelles, Journal of Physical Chemistry, 97(49), 12974–                                           
12983(1993).

doi:10.1021/j100151a054

Prashant Singh and Balaji Raja, R., Biological Synthesis and Characterization of Silver
Nanoparticles Using the Fungus Trichoderma Harzianum., Asian J. Exp. BIOL. Sci., 2(4), 600-605(2011).

Razia Khan, P., Bhawana, M. H., Fulekar, Microbial decolorization and degradation of synthetic dye: a review, Rev Environ SciBiotechnol.,12(1), 75–97(2013).

doi:10.1007/s11157-012-9287-6

Shivaji, S., Madhu, S., Shashi Singh, Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria, Process Biochemistry, 46(13), 1800–1807(2011).

Sándor, K., János, T., György, D., Lajos, D., andMiklós, Z., Silver Nanoparticles by PAMAMAssisted photochemical reduction of Ag+, J. Colloid and Interface Science, 229(2), 550– 553(2000).

doi:10.1006/jcis.2000.7011

Sharma, V. K., Yngard, R. A., Lin, Y., Silver nanoparticles: Green synthesis and their
antimicrobial activities, Adv. Colloid Interfac., 145(2), 83-96 (2009).
doi:10.1016/j.cis.2008.09.002

Smetana, A. B., Klabunde, K. J. and Sorensen, C. M., Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D super lattice formation. J. Colloid and Interface Science, 284(2), 521–526(2005).
doi:10.1016/j.jcis.2004.10.038

Klaus-Joerger, T., Joerger, R., Olsson, E., Granqvist, C. G., Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, Trends in Biotechnology, 19(1), 15-20(2001).
doi:10.1016/S0167-7799(00)01514-6

Textor, T., Fouda, M. M. G., and Mahltig, B., Deposition of durable thin silver layers onto
polyamides employing a heterogeneous Tollens' reaction, Applied Surface Science, 256(8), 2337–2342(2010).
doi:10.1016/j.apsusc.2009.10.063

Vorobyova, S. A., Lesnikovich, A. I., and Sobal, N. S., Preparation of silver nanoparticles by
interphase reduction, Colloids and Surfaces, 152(7), 375–379(1999).
doi:10.1016/S0927-7757(98)00861-9

Yu-Chuan, L., and Li-Huei, L., New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sono-electro chemical methods, Electrochemistry Communications, 6(11), 1163–1168(2004).
doi:10.1016/j.elecom.2004.09.010

Contact Us

Powered by

Powered by OJS