Low Temperature Synthesis and Characterization of rGO-CoO Nanocomposite with Efficient Electrochemical Properties
J. Environ. Nanotechnol., Volume 4, No 2 (2015) pp. 01-08
Abstract
Graphene has been offered as a promising two dimensional nanomaterial with outstanding electric, thermal and mechanical properties for many applications. Here we narratea facile approach to prepare a reduced graphene oxide-cobalt oxidenanocomposite (rGO-CoO) via a general co-precipitation method at 80 °C and within 6 hours reaction period and the final product was annealed at 500 °C. Transmission electron microscope images show that the cobalt oxide nanoparticles (10-20 nm) are encapsulated by a reduced graphene oxide shell. The oxidation states of the nanocomposite were confirmed by XPS studies. The electrochemical properties of the nanocomposite were investigated by using cyclic voltammetry (CV). A maximum specific capacitance of 175 F/g was obtained at a scan rate of 10 mV/s.
Full Text
Reference
Ashok Kumar, N., Choi, H., Ran Shin, Y., Chang, D., Dai, L. and Baek, J., Polyaniline-Grafted reduced graphene oxide for efficient electrochemical super capacitors. ACS. Nano. 6(2), 1715-1723(2012).
doi:10.1021/nn204688c
Bao, C., Song, L., Charles, W., Yuan, B.,Guo, Y., Hu, Y. and Gong, X., Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene, J. Matter. Chem., 22(17), 16399-16406(2012).
doi:10.1039/c2jm32500d
Chen, S., Zhu, J., Han, Q.,Zheng, Z., yang, Y. and Wang, X., Shape-Controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties, Crystal Growth & Design., 9(5), 4356-4361(2009).
doi:10.1021/cg900223f
Dong, X, Xu, H., Wang, X., Huang, Y., Chan-Park, B., Zhang, H., Wang, L., Huang, W. and Chen, P., 3D Graphene-Cobalt oxide electrode for high performance super capacitor and enzymeless glucose detection, ACS Nano., 6(4), 3206-3213(2012).
doi:10.1021/nn300097q
Elzatahry, A., Abdullah, A., Salah El-Din, T., Al-Enizi, A.,Maarouf, A.,Galal, A., Hassan, H., El-Ads, E Al-Theyab, S. and Al-Ghamdi, A., Nanocomposite graphene-based materials for fuel cell applications, Int. J. Electrochem. Sci., 7(13), 3115-3126(2012).
Fan, S., Zhang, Y., Ma, X., Yan, E., Liu, X., Li, S., Liang, W. and Zhai, X., Deposition of Nanocrystal Co3O4 on grapheme nano sheets as anode material for lithium ion batteries, Int. J. Electrochem. Sci., 8(5), 10498-10505(2013).
Gao, L.,Yue, W., Tao, S. and Fan, L., Novel strategy for preparation of graphene-Pd, Pt Composite, and its enhanced electrocatalytic activity for alcohol oxidation, Langmuir, 29(8), 957-964(2013).
doi:10.1021/la303663x
Gao, W., Majumder, M., Alemany, B., Narayanan, N., Ibarra, A., Pradhan, K. and Ajayan, M., Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces., 3, 1821-1826(2011).
doi:10.1021/am200300u
Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y. and Qiu, The role of microwave absorption on formation of graphene from graphite oxide, J. Carbon., 50(9), 3267-3273(2012).
doi:10.1016/j.carbon.2011.12.005
Hummers, W. S., Offerman, R. E., Preparation of graphite oxide., J. Am. Chem. Soc. 80(5), 1339-1339(1958).
doi:10.1021/ja01539a017
Jiang, Y., Zhang, Q., Li, F., Niu, L., Glucose oxidase and graphene bio-nanocomposite bridged by ionic liquid unit for glucose bio-sensing application, Sensors and Actuators, 161(1), 728-733(2012).
doi:10.1016/j.snb.2011.11.023
Lee, S., Mattevi, C., Chhowalla, M. and Sankaran, R., Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications, J. Phys. Chem. Lett., 3(6), 772-777(2012).
doi:10.1021/jz300080p
Li, D., Shi, D., Chen, Z., Liu, H. and Jia, D., Enhanced rate performance of cobalt oxide/ nitrogen doped graphene composite for lithium ion batteries, RSC Advances, 3(15), 5003-5008(2013).
doi:10.1039/c3ra22765k
Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W. and Wang, H., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electro. Chemica. Acta., 55(8), 3909-3914(2010).
doi:10.1016/j.electacta.2010.02.025
Park, S., Park, S. and Kim, S., Preparation and capacitance behaviors of cobalt oxide/graphene composites, Carbon Lett., 13(2), 130-132(2012).
doi:10.5714/CL.2012.13.2.130
Wang, L., Li, J., Mao, C., Zhang, L., Zhao, L., Jiang, Q., Facile preparation of a cobalt hybrid/grapheme nano composite by in situ chemical reduction: high lithium storage capacity and highly efficient removal of congo red, Dalton Trans., 42(4), 8070-8077(2013).
doi:10.1039/c3dt50333j
Wood, C., Ogitsu, T., Otani, M. and Biener, J., First principle inspired design strategies for graphene based super capacitor electrodes, J. Phys. Chem. C., 118(1), 4-15(2014).
doi:10.1021/jp4044013
Wu, Z., Zhou, G., Yin, L., Ren, W., Li, F. and Cheng, H., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy., 1(1), 107-131(2012).
doi:10.1016/j.nanoen.2011.11.001
Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z. and Xu, Q., Preparation of Graphene oxide/polyaniline nanocomposite with assistance of super critical carbon dioxide for super capacitor electrodes, Ind. Eng. Chem. Res., 51(4), 14390-14398(2012).
doi:10.1021/ie301734f
Yan, J., Wei, T.,Qiao, W., Shao, B., Zhao, Q., Zhang, L. and Fan, Z., Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for super capacitors, Electro. Chemica. Acta., 55(7), 6973-6978(2010).
doi:10.1016/j.electacta.2010.06.081
Yao, Y., Xu, C., Qin, J., Wei, F., Rao, M. and Wang, S., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Ind. Eng. Chem. Res., 52(13), 17341-17350(2013).
doi:10.1021/ie401690h
Zhang, L., Huang, Y., Zhang, Y., Ma, Y. and Chen, Y., Sol-Gel Autocombustion Synthesis of Graphene/Cobalt magnetic nanocomposites, J. Nanosci. Nanotechnol, 13(2), 1129-1131(2013).
doi:10.1166/jnn.2013.6000
Zheng, Y., Li, P., Li, H., Chen, S., Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its applications for highly sensitive glucose sensor. Int., J. Electrochem. Sci., 9(7), 7369-7381(2014).
Zhu, J., Sharma, Y., Zeng, Z., Zhang, X.,Madhavi, S.,Mhaisalkar, S., Zhang, H.,Hng, H. and Yan, Q., Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-Ion battery electrodes, J. Phys. Chem. C., 115(5), 8400-8406(2011).
doi:10.1021/jp2002113