Biological Synthesis of Silver Nanoparticles using Ginger (Zingiber Officinale) Extract
J. Environ. Nanotechnol., Volume 3, No 4 (2014) pp. 32-40
Abstract
Plant extracts are very cost effective and eco-friendly and thus can be used as an economic and efficient alternative for the large-scale synthesis of nanoparticles. We report on the use of ginger extract for the biosynthesis of silver nanoparticles. Bioactive silver nanoparticle synthesis was byreacting the ginger extract with aqueous silver nitrate solution at room temperature (27 oC ± 2 oC) and at 60 oC. Formation of silver nanoparticles was confirmed by UV– visible spectroscopy, X-ray diffraction pattern and Scherrer's formula. Antibacterial activity of synthesized silver nanoparticles showed inhibitory activity against bacteriaviz., Escherichia coli, Klebsiellapneumoniae, Pseudomonas aeruginosa, Bacillus cereus and Proteus vulgaris.Additionally the toxicity of the produced nanoparticles was checked for phyto and genotoxicity.
Full Text
Reference
Baki, A. A. and Anderson, J. D., Vigour determination in soybean seed by multiple criteria, Crop Sci., 13, 630-3(1973).
doi:10.2135/cropsci1973.0011183X001300060013x
Crooks, R. M., Lemon, B. I., Sun, L., Yeung, L. K. and Zhao, M., Top.Curr.Chem., 212, 82-
135(2001).
doi:10.1007/3-540-44924-8_3
Dubey, M., Bhadauria, S. and Kushwa, B. S., Green synthesis of nanosilver particles from extract of Eucalyptus hybrida(Safeda) leaf, DJNB, 4(3), 537-43(2009).
Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman M. J., J. Nanobiotechnol., 3, 6(2005).
HariPriyaa, G. and KumudiniBelurSatyan., Green synthesis of silver nanoparticles using Garlic (Allium sativum) extract, IJBR., 3(4), 1-12(2014).
Jain, D., Kumar Daima, H., Kachhwaha, S. and Kothari, S. L., Synthesis of plant mediated silver nanoparticles using papaya fruit and their antimicrobial activities, DJNB., 4 (3), 557-
63(2009).
Kheybari, S., Samadi, N., Hosseini, S. V., Fazeli, A. and Fazeli, M. R., Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method, DARU J. Pharm. Sci., 18 (3), 168-72(2010).
Konwarh, R., Gogoi, B., Philip, R., Laskar, M. A. and Karak, N., Preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial green silver nanoparticles using aqueous extract of Citrus sinensispeel, Colloids Surf. B: Biointerfaces., 84, 338-45(2011).
doi:10.1016/j.colsurfb.2011.01.024
Kulkarni, A. P., Srivastava, A. A., Harpale, P. M. and Zunjarrao, R. S., Plant mediated synthesis of silver nanoparticles - tapping the unexploited sources, Journal of Natural Product and plant Resources, 1 (4), 100-07(2011).
Macleod, R. D., Some effects of 2, 4, 5- trichlorophenoxy acetic acid on the mitotic cycle of lateral root apical meristems of V. faba, Chromosoma, 27, 327-37 (1969).
doi:10.1007/BF00326169
Mason, C., Vivekanandhan, S., Misra, M. and Mohanty, A. K., Switchgrass extract mediated green synthesis of silver nanoparticles, WJNSE, 2 (2), 47-52(2012).
doi:10.4236/wjnse.2012.22008
Mazumdar, H. and Ahmed, G. U., Phytotoxicity effect of Silver nanoparticles on Oryza sativa, International Journal of Chem. Tech. Research., 3 (3) 1494-500(2011).
Mukherjee, P., Ahmad, A. and Mandal, D., Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angewandte Chemie International Edition, 40: 19: 3585-88(2001).
doi:10.1002/1521-3773 (20011001) 40:19<3585::AID-ANIE3585>3.0.CO;2-K
Narasimha, G., Praveen, V., Mallikarjuna, K. and Raju, B. D. P., Mushrooms mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity, IJND., 2, 29-36 (2011).
Prabhu, N., Divya., Raj, T., Gowri, Y. K., Siddiqua, A. S. and Innocent, J. P., Synthesis of silver phyto nanoparticles and their antibacterial efficacy, DJNB., 5 (1), 185-9(2010).
Sharma, V. K., Yngard, R. A. and Lin, Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145, 83-96(2009).
doi:10.1016/j.cis.2008.09.002
Sik, L., Acar, O. and Aki, C., Genotoxic effects of industrial wastewater on Allium cepa L, Afr. J. Biotechnol., 8, 1919-23(2009).
Webster, P. L. and Davidson, D., Changes in the duration of mitotic cycle induced by colchicine and indole-3-yl acetic acid in V. faba roots, J. Exp Bot., 20, 671-85(1969).
doi:10.1093/jxb/20.3.671
Yang, L. and Watts, D. J., Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett, 158, 122-32(2005).
doi:10.1016/j.toxlet.2005.03.003