Open Access

Enhanced Methylene Blue Dye Degradation by Newly Synthesized Ag2O-TiO2 Heterostructure

Daniel, Professor and Head D. Sriprabha, Department of Nanotechnology, Sri Ramakrishna Engineering College, Coimbatore, TN, India. T. Mohankumar, Department of Nanotechnology, Sri Ramakrishna Engineering College, Coimbatore, TN, India. D. Nataraj
Department of Physics, Bharathiar University, Coimbatore, TN, India.


J. Environ. Nanotechnol., Volume 3, No 4 (2014) pp. 105-111

https://doi.org/10.13074/jent.2014.12.143132

PDF


Abstract

Silver (Ag) coated TiO2 heterostructure was prepared by precipitation method using equal ratio of silver nitrate (AgNO3) and as-synthesized TiO2 nanobelt. The X-ray diffraction study results indicate high crystalline nature of the Ag2O/TiO2 heterostructure. The surface morphology of Ag2O/TiO2 heterostructure has thoroughly been investigated by Scanning Electron Microscopy (SEM). The stability and thermal studies of Ag2O/TiO2 heterostructure were examined by using Zeta analyzer and Differential Scanning Calorimetry, respectively. Photocatalytic activity studies were carried out using Methylene Blue (MB) as a model molecule to highlight the consequence of Ag2O/TiO2 heterostructure. The reuse of Ag2O/TiO2 nanobelt after annealing shows the excellent recovery of the catalyst. These studies may contribute to additional applications of hierarchical Ag2O/TiO2 heterostructure membranes, including harnessing sunlight for water treatment and photo catalytic activity.

Full Text

Reference


Bergmann, K. and O'Konski, C. T., A Spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite, J. Phys. Chem. 67, 2169(1963).

doi:10.1021/j100804a048

Dai, Y. Q., Cm. M. Cobley, Zeng, J., Sun, Y. M. and Xia, Y. N., Synthesis of Anatase TiO2 Nanocrystals with Exposed {001} Facets, Nano Lett. 9, 2455(2009).

doi:10.1021/nl901181n

Dodda, A., McKinleya, A., Tsuzuki, T. and Saunders, M., Optical and photocatalytic properties of nanocrystalline TiO2 synthesised by solid-state chemical reaction, J. Phys. Chem. of Sol. 68, 2341(2007).

doi:10.1016% 2fj.jpcs. 2007. 07 .008

Hegde, M. S., Nagaveni, K. and Roy, S., Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1−xMxO2−δ (M = Cu, Fe, Pt, Pd, V, W, Ce, Zr), J. Physics 65, 641(2005).


Henderson, M. A., White, J. M., Uetsuka, H. and Onishi, H., Photochemical Charge Transfer and Trapping at the Interface between an Organic Adlayer and an Oxide Semiconductor, J. Am. Chem. Soc. 125, 14974(2003).

doi: 10.1021/ja037764+.

Hu, A., Liang, R., Zhang, X., Kurdi, S., Luong, D., Huang, H., Peng, P., Marzbanrad, E., Oakes, K. D., Zhou, Y. and Servos, M. R., Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures, J. Photochem. Photobio. A: Chem., 256, 7(2013).

doi: 10.1016/j.jphotochem.2013.01.015.

Lazzeri, M., Vittadini, A. and Selloni, A., Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B 63, 155409(2001).

doi:10.1103/PhysRevB.63.155409

Li, G. and Gray, K. A., The solid-solid interface: explaining the high and unique photocatalytic
reactivity of TiO2-based nanocomposite materials, Chemical Physics, 339, 173(2007).

doi:10.1016/j.chemphys.2007.05.023

Li, G., Ciston, S., Saponjic, Z. V., Chena, L., Dimitrijevic, N. M., Rajh, T. and Graya, K. A., Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications, J. Catalysis, 253, 105(2008).

doi:10.1016/j.jcat.2007.10.014

Linsebigler, A. L., Lu, G. and Yates, J. T., Jr., Photocatalysis on TiO2 Surfaces: Principles,
Mechanisms, and Selected Results,Chem. Rev. 95, 735(1995).
doi:10.1021/cr00035a013

Liu, Y., Shu, W., Chen, K., Peng, Z. and Chen, W., Enhanced Photothermocatalytic  Synergetic Activity Toward Gaseous Benzene for Mo+CCodoped Titanate Nanobelts, ACS Catal. 2, 2557(2012).

doi: 10.1021/cs300501e

Mukhopadhyay, A., Basak, S., Kishore Das, J., Medda, S. K., Chattopadhyay, K. and De, G., Ag−TiO2 Nanoparticle Codoped SiO2 Films on ZrO2 Barrier-Coated Glass Substrates with Antibacterial Activity in Ambient Condition, ACS Appl. Mater. Interfaces, 2, 2540(2010).

doi: 10.1021/am100363d

Skoog, D. A., Holler, F. J. and Nieman, T., Principles of Instrumental Analysis (5 edn.),  NewYork, pp. 805(1998).

Sze-Mun Lam, Jin-Chung Sin, Ahmad Zuhairi Abdullah, Abdul Rahman Mohamed, Efficient
photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact
fluorescent lamp irradiation, Chemical Papers- Slovakacademy of Sciences, 67(10) 1277–
1284(2013).

doi:10.2478/s11696-013-0395-8.

Wang Ya-Lan, Zhou Zhang-Kai, Peng Xiao-Niu, Zhou Li, Hao Zhong-Hua and Wang Qu-Quan,The Fluorescence Dynamics of Chlorophyll a and Sodium Magnesium Chlorophyllin, Chin. Phys.Lett. 30, 098702 (2013).

doi:10.1088/0256-307X/30/9/098702

Wang, J., Tafen, D. N., James P. Lewis, Hong, Z., Manivannan, A., Zhi, M., Li, M. and Wu, N., J. Am. Chem. Soc. 156, 345 (2009).

Wang, Y., Du, G., Liu, H., Liu, D., Qin, S., Wang, N., Hu, C., Tao, X., Jiao, J., Wang, J. and Wang, Z. L., Nanostructured Sheets of Ti O Nanobelts for Gas Sensing and Antibacterial Applications†, Adv. Funct. Mater. 18, 7(2008).

doi: 10.1002/adfm.200701120

Xiong, Z. and Zhao, X., Nitrogen-Doped Titanate- Anatase Core–Shell Nanobelts with Exposed {101} Anatase Facets and Enhanced Visible Light Photocatalytic Activity, J. Am. Chem. Soc. 134, 5754 (2012).

doi: 10.1021/ja300730c

Xu, F., Benavides, J., Ma, X. and Cloutier, S. G., Interconnected T i O2 Nanowire Networks for PbS Quantum Dot Solar Cell Applications, J. Nanotech. Article ID 709031(2012).

doi:10.1155/2012/709031

Zhou, W., Liu, H., Robert I. Boughton, Du, G., Lin, J., Wang, J. and Liu, D., One-dimensional singlecrystalline Ti–O based nanostructures: properties, synthesis, modifications and applications, J. Mater. Chem. 20, 5993(2010).

doi: 10.1039/B927224K

Zhou, W., Liu, H., Wang, J., Liu, D., Du, G. and Cui, J., ACS Appl. M ater. & Interfac. 23, 394(2004).

Contact Us

Powered by

Powered by OJS