Focusing Properties of Double Ring Shaped Cylindrical Vector Beam by High NA Parabolic Mirror
J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 15-20
Abstract
The tight focusing properties of double ring shaped cylindrical vector beam focused with a high numerical aperture (NA) parabolic mirror is investigated theoretically by Vector diffraction theory. It shows that the three-dimensional intensity distributions in the vicinity of the focus is dependent on the polarization rotation angle, pupil to beam radio and numerical aperture value. Additionally, some interesting focal volume structures, such as adjustably confined flat-topped focus, focal spot, and doughnut focal hole can be obtained by controlling polarization rotator angle. The tightly focused double ring shaped cylindrical vector beam by a high numerical aperture parabolic mirror have possible applications in particle acceleration, optical trapping and manipulating, single molecule imaging and high resolution imaging microscopy.
Full Text
Reference
Ambrose, W. P., Basché, T. and Moerner, W. E., Detection and spectroscopy of single pentacene moleculesin a p-terphenyl crystal by means of fluorescence excitation, J. Chem. Phys., 95, 7150- 7163 (1991).
doi:10.1063/1.461392
Davidson, Nir ., Bokor, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens, Optics Letters., 29, 1318-1320 (2004).
doi:10.1364/OL.29.001318
Durand, Y., Woehl, J. C., Viellerobe, B., Göhde, W., and Orrit, M. New design of a cryostat-mounted scanning near-field optical microscope for single molecule spectroscopy, Rev. Sci. Instrum. 70, 1318-1325 (1999).
doi:10.1063/1.1149591
Enderlein, J., Ruckstuhl, T., and Seeger, S. Highly efficient optical detection of surface-generated fluorescence, Appl. Optics., 38, 724-732 (1999).
doi:10.1364/AO.38.000724
Fleury, L., Tamarat, P., Lounis, B., Bernard, J., and Orrit, M. Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K, Chem. Phys. Lett, 236, 87-95 (1995).
doi:10.1016/0009-2614(95)00185-7
Veerabagu Suresh, N., Sarasvathi, R. C., Haresh M.Pandya, Rajesh, K. B., Generation of Multiple Focal Hole Segment by Tight Focusing of Azimuthally Polarised Double Ring Shaped Beam, J. Environ. Nanotechnol., 2, 37-41(2013)
doi:10.13074/jent.2013.02.nciset36
Gahagan, K.T., Swartzlander G.A., Jr., Simultaneous trapping of low-index and high- index micro particles observed with an optical-vortex trap, J. Opt. Soc. Am.,B,16, 533–537 (1999).
doi:10.1364/JOSAB.16.000533
Helseth, L.E., Roles of polarization, phase and amplitude in solid immersion lens systems, Opt. Commun., 191, 161–172 (2001).
doi:10.1016/S0030-4018(01)01150-6
Hafizi, B., Esarey, E., Sprangle, P. Laser-driven acceleration with Bessel beams, Phys. Rev. E, 55, 3539–3545 (1997).
doi:10.1103/PhysRevE.55.3539
Liu,J., Tan,J., Wilson,T., Zhong, C.Rigorous theory on elliptical mirror focusing for point scanning microscopy, Optics Express., 20, 6175-6184 (2012).
doi:10.1364/OE.20.006175
Lieb, M.A., Meixner, A.J. A high numerical aperture parabolic mirror as imaging device for confocal microscopy, Optics Express., 8, 458-474 (2001)
doi:10.1364/OE.8.000458
Niziev, V.G., Nesterov, A.V. Influence of beam polarization on laser cutting efficiency, J. Phys. D: Appl. Phys., 32 (13), 1455–1461 (1999).
doi:10.1088/0022-3727/32/13/304
Nesterov, A.V., Niziev, V.G. Laser beams with axially symmetric polarization, J.Phys. D., 33, 1817–1822 (1999).
doi:10.1088/0022-3727/33/15/310
Prabakaran, K., Rajesh, K.B., Pillai, T.V.S., Chandrasekaran, R., Jaroszewicz, Z. Generation of multiple focal spot and focal hole of sub wavelength scale using phase modulated LG (1,1) beam, Optik 124, 5086– 5088 (2013).
doi:10.1016/j.ijleo.2013.03.068
Prabakaran, K., Rajesh, K.B. and Pillai, T. V. S. Focus shaping of tightly focused TEM11 mode cylindrically polarized Laguerre Gaussian beam by diffractive optical element, Optik .,124, 5039– 5041 (2013).
doi:10.1016/j.ijleo.2013.03.031
Rajesh, K.B., Veerabagu Suresh, N., Anbarasan, P.M., Gokulakrishnan, K., Mahadevan, G. Tight focusing of double ring shaped radially polarized beam with high NA lens axicon, J. Optics & Laser Technology., 43, 1037–1040 (2011).
doi:10.1016/j.optlastec.2010.11.009
Richards B., and Wolf E. Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system, R. Soc. London, Ser. A., 253, 358-379(1959).
doi:10.1098/rspa.1959.0200
Rao L. Z., Pu J. X. andChen Z. Y. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens, Optics & Laser Technology 41, 241-246 (2009)
doi:10.1016/j.optlastec.2008.06.012
Stadler, J., Stanciu, C., Stupperich, C., Meixner,A.J. Tighter focusing with a parabolic mirror, Optics Letters., 33, 681-683 (2008).
doi:10.1364/OL.33.000681
Sheppard, C. J. R., Choudhury, A., Gannaway, J. Microwaves, Optics and Acoustics.,1(4), 129 (1977).
doi:10.1364/JOSAA.17.002090
Varga, P., Török,P. Focusing of electromagnetic waves by paraboloid mirrors. I. Theory, Journal of the Optical Society of America A., 17, 2081-2089 (2000).
doi:10.1364/JOSAA.17.002081
van derMeer, H., Disselhorst, J. A. J. M., Koehler, J., Brouwer, A. C. J., Groenen, E. J. J., and Schmidt, J. Aninsert for single-molecule magneticresonance spectroscopy in an external magnetic field, Rev. Sci.Instrum. 66, 4853-4856 (1995)
doi:10.1063/1.1146164
Youngworth, K.S. and Brown, T. G. Focusing of high numerical aperture cylindrical vector beams, Opt. Express., 7 (2), 77–87 (2000).
doi:10.1364/OE.7.000077
Youngworth, K.S. and Brown, T. G., Inhomogeneous polarization in scanning optical microscopy, Proc. SPIE, 3919 (2000). Zhan, Q., Trapping metallic Rayleigh particles with radial polarization, Opt.Express., 12 (15), 3377– 3382 (2004).
doi:10.1364/OPEX.12.003377
Zhan, Q., Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams, J. Opt. A: Pure Appl. Opt., 5, 229–232 (2003). doi:10.1088/1464-4258/5/3/314 Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photon. 1, 1– 57 (2009).
doi:10.1364/AOP.1.000001 20