Open Access

Effect of Coma on Tightly Focused Radially Polarized Vortex Beams

G. Therese Anita, anithamilton10@gmail.com
Department of Physics, Arunachala College of Engineering for Women, Nagercoil, TN, India
T. V. S. PILLA, Department of Physics, Arunachala College of Engineering for Women, Nagercoil, TN, India K. B.Rajesh Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India


J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 43-45

https://doi.org/10.13074/jent.2014.12.144130

PDF


Abstract

In this paper attention is given to the effects of primary coma on the radially polarized vortex beam based on the vector diffraction theory. It is observed that by properly choosing the polarization angle and topological charge one can obtain many novel focal patterns suitable for optical tweezers, laser printing and material process. However, it is observed that the focusing objective with coma generates structural modification and positional shift of the generated focal structure.

Full Text

Reference


Biss, D. P. and Brown, T. G., Primary aberrations in focused radially polarized vortex beams, Opt. Express. 12, 384-393(2004).

doi:10.1364/OPEX.12.000384

Boruah B. R. and Neil M. A. A. Susceptibility to and correction of azimuthal aberrations in singular light beams. Opt. Express. 14, 10377-10385 (2006).

doi:10.1364/OE.14.010377

Braat, J. J. M., Dirksen P, Ajem J, Van de A.S. Extended Nijboer representation of the vector field in the focal region of an aberrated high aperture optical system, J Opt Soc Am A. 20, 2281- 2292 (2003).

doi:10.1364/JOSAA.20.002281

Helseth L.E. Optical vortices in focal region. Opt. Commun. 229, 85-91(2004).

doi:10.1016/j.optcom.2003.10.043

Kant R. An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma. J.Mod.Opt. 42, 299- 320 (1995).

doi:10.1080/09500349514550291

Saraswathi, R. C., Prabakaran, K., Rajesh, K. B., Haresh M. Pandya, Focusing of Radially Polarized Lorentz gaussian beam with one on axis Optical vortex, J. Environ. Nanotechnol., 2(3), 21-24 (2013)

doi:10.13074/jent.2013.09.132027

Veerabagu Suresh, N., Sarasvathi, R. C., Haresh M.Pandya, Rajesh, K. B., Generation of Multiple Focal Hole Segment by Tight Focusing of Azimuthally Polarised Double Ring Shaped Beam, J. Environ. Nanotechnol., 2, 37-41(2013)

doi:10.13074/jent.2013.02.nciset36

Kotlyar V.V, Almazov A.A, Khonina S.N, Soifer V.A. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate, J Opt Soc Am A. 22, 849-861(2005).

doi:10.1364/JOSAA.22.000849

Nye J. F. and Berry M. V., Dislocations in wave trains, Proc R Soc London Ser A 336, 165-190 (1994).

doi:10.1098/rspa.1974.0012

Quabis S, Dorn R, Eberle M, Glockl O, Leuchs G. The focus of light-theoretical calculation and experimental tomographic reconstruction, Appl Phys B. 72, 109-113(2001).

doi:10.1007/s003400000451

Rao L, Pu J, Chen Z, Yei P. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt Laser Tech. 41, 241– 246 (2009).

doi:10.1016/j.optlastec.2008.06.012

Richards B and Wolf E. Electromagnetic diffraction in optical systems II. Structure of the Image field in an aplanatic system. Proc. R. Soc. London, Ser. A 253: 358-379 (1959).

doi:10.1098/rspa.1959.0200

Soskin M. S, Vasnetsov M. V. Singular Optics, Progress in optics, Amsterdam. 42, 219-276 (2001). Youngworth K. S, Brown T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express. 7, 77-87 (2000).

doi:10.1364/OE.7.000077

Contact Us

Powered by

Powered by OJS