Investigation of Azimuthally Polarized Besselâ€modulated Gaussian Beam with Annular Obstruction
J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 04-08
Abstract
Investigation of annular obstructed azimuthally polarized Bessel-modulated Gaussian beam (QBG) in the focal region of high NA lens, based on vectorial diffraction theory. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.
Full Text
Reference
Zhan, Q., Cylindrical vector beams: From mathematical concepts to applications, Advances in Optics and Photonics, 1, 1–57, (2009).
doi:10.1364/AOP.1.000001
Youngworth, K. S. and. Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7, 77–87, (2000).
doi:10.1364/OE.7.000077
Gao, X., Wang, J., Gu, H. and Xu, W., Focusing properties of concentric piecewise cylindrical vector beam, Optik, 118, 257–265, (2007).
doi:10.1016/j.ijleo.2006.10.006
Zhou, G., Ni, Y., and Zhang, Z., Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field, Optics Communications, 272, 32–39, (2007).
doi:10.1016/j.optcom.2006.11.044
Quabis, S., Dorn, R., Eberler, M., Glӧckl, O. and Leuchs, G., The focus of light – theoretical calculation and experimental tomographic reconstruction, Appl. Phys. B 72, 109, (2001).
doi:10.1007/s003400000451
Helseth, L. E., Optical vortices in focal regions, Opt. Commun 229, 85-91, (2004). doi:10.1016/j.optcom.2003.10.043 Grosjean, T. and Courjon, D., Smallest focal spots, Opt. Commun. 272, 314-319, 2007.
doi:10.1016/j.optcom.2006.11.043
Ganic, D., Gan, ., X. and Gu, M., Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Opt Express, 11, 2747, (2003).
doi:10.1364/OE.11.002747
Zhan, Q., and Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Express, 10, 324, (2002).
doi:10.1364/OE.10.000324
Helseth, L. E., Smallest focal hole, Opt. Commun. 257, 1-8, (2006).
doi:10.1016/j.optcom.2005.07.019
Zhan, Q., Properties of circularly polarized vortex beams, Opt. Lett. 31, 867 (2006).
doi:10.1364/OL.31.000867
Bokor, N. and Davidson, N. A three dimensional dark focal spot uniformly surrounded by light, Opt. Commun. 279, 279-229, (2007).
doi:10.1016/j.optcom.2007.07.014
Jia, B., Gan, X. and Gu, M., Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD, Opt. Express 13, 6821–6827, (2005).
doi:10.1364/OPEX.13.006821
Ashkin, J. M., Dziedzic, T. and Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330, 769-771 (2003)
doi:10.1038/330769a0
Grier, D. G., A revolution in optical manipulation," Nature, 424, 810–816, (2003).
doi:10.1038/nature01935
MacDonald, M. P., Spalding, G. C. and Dholakia, K., Microfluidic sorting in an optical lattice, Nature, 426, 421–424, (2003).
doi:10.1038/nature02144
Garces-Chaves, V., McGloin, D.. Melville, H., Sibbett, W. and Dholakia, K., Simultaneous micromanipulation in multiple planes using a selfreconstructing light beam, Nature Vol. 419, pp. 145–147, (2002).
doi:10.1038/nature01007
Paterson, L., MacDonald, M. P., Arlt, J., Sibbett, W., Bryant, P. E. and Dholakia, K., Controlled rotation of optical trapped microscopic particles, Science, 292, 912–914 (2001)
doi:10.1126/science.1058591
Gao, X., Zhou, F., Xu, W. and Gan, F., Focus splitting induced by a pure phase-shifting apodizer, Optics Communications 239, 55–59, (2004) 7 K. B. Rajesh et al. / J. Environ. Nanotechnol., Vol 3, 04-08, 2014
doi:10.1016/j.optcom.2004.05.029
Caron, C. F. R. and Potvliege, R. M., Bessel-modulated Gaussian beams with quadratic radial dependence, Optics Communications. 164, 83-93, (1999).
doi:10.1016/S0030-4018(99)00174-1
Hricha, Z., Belafhal, A., Focal shift in the axisymmetric Bessel-modulated Gaussian beam, Optics Communications, 255, 235–240, (2005).
doi:10.1016/j.optcom.2005.06.025
Wang, X., LÜ, B., The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams, Optical and Quantum Electronics, 34, 1071–1077, (2002).
doi:10.1023/A:1020403507805
Belafhal, A., Dalil, L. E., Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system, Optics Communications, 177, 181–188, (2000).
doi:10.1016/S0030-4018(00)00600-3
B. and Wang, X., Kurtosis parameter of Besselmodulated Gaussian beams propagating through ABCD optical systems, Optics Communications, Vol. 204, pp. 91–97, (2002).
doi:10.1016/S0030-4018(02)01214-2
Mei, Z., Zhao, D., Wei, X., Jing, F. and Zhu, Q., Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture, Optik, 116, 521–526, (2005).
doi:10.1016/j.ijleo.2005.05.003
Wang, X. and Lü, B., The beam width of Besselmodulated Gaussian beams, J. Mod. Opt. 50, 2107–2115, (2003).
doi:10.1080/09500340308234562
Wang, H., Shi, L., Lukyanchuk, V., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2, 501, (2008).
doi:10.1038/nphoton.2008.127
Dorn, R., Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91, 233901-233904, (2003).
doi:10.1103/PhysRevLett.91.233901
Tang, W. T., Yew, E. Y .S. and Sheppard, C .J. R. Polarization conversion in confocal microscopy with radially polarized illumination, Opt. Lett., 34, 2147–2149, (2009).
doi:10.1364/OL.34.002147
Gu, M., Advanced Optical Imaging Theory, Springer, Heidelberg, (2000).
doi:10.1007/978-3-540-48471-4
Suresh, P., Mariyal, C., Rajesh, K. B., Pillai, T. V. S., Polarization effect of cylindrical vector beam in high numerical aperture lens axicon systems, Optik 124, 1632–1636, (2013).
doi:10.1016/j.ijleo.2012.05.049
Suresh, P, Mariyal, C., Saraswathi, Rajesh, K. B., Pillai, T.V.S. and Z. Jaroszewicz, "Tightly focusing of spirally polarized Quadratic Bessel Gaussian beam through a dielectric interface," Optik, 124, 1264-1266, (2014).
doi:10.1016/j.ijleo.2013.08.039