Biosynthesized and Chemically Synthesized Titania Nanoparticles: Comparative Analysis of Antibacterial Activity
J. Environ. Nanotechnol., Volume 3, No 3 (2014) pp. 73-81
Abstract
Green synthesis of nanoparticles using plant extract is the novel method to develop environmentally benign nanoparticles which can be used in numerous biomedical applications. In this study we have synthesized TiO2 nanoparticles from Titanium Oxysulfate solution using Hibiscus flower extract. The synthesized nanoparticles were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and FTIR. The XRD pattern with sharp peaks describes the crystallinity and purity of titanium dioxide nanoparticles. The shape and morphology of TiO2 nanoparticles were studied by SEM analysis, the results clearly represent that the flower extract capped titanium dioxide nanoparticles were dispersed and disaggregated. FTIR spectrum discloses the information about the interaction between the functional groups of the phytochemicals in the flower extract and the TiO2. This report also explains the efficient antibacterial activity of biostabilized TiO2 nanoparticles when compared to chemically synthesized TiO2. Based on the results we confirm that the flower extract stabilized TiO2 nanoparticles may have potential biomedical applications when compared to chemically synthesized TiO2 nanoparticles.
Full Text
Reference
Al-Salim, N. I., Bagshaw, S. A., Bittar, A., Kemmtt, T. and Mcquillan, A. J., Characterisation and activity of sol–gel-prepared TiO2 Photocatalysts modiï¬ed with Ca, Sr or Ba ion additives, J Mater Chem., 10, 2358–2363 (2000).
doi:10.1039/b004384m
Anusha Bhaskar, Nithya V, and Vidhya V. G., Phytochemical screening and in-vitro antioxidant activities of the ethanolic extract of Hibiscus rosa sinensis L, Annals of Biological Research, 2, 653-661 (2011).
Archana Maurya, Pratima Chauhan, Amita Mishra, and Abhay K. Pandey., Surface Functionalization of TiO2 with Plant Extracts and their Combined Antimicrobial Activities Against E. faecalis and E. Coli, Journal of Research Updates in Polymer Science, 1, 43-51 (2012).
Balantrapu Krishna, and Goia Dan., Silver nanoparticles for printable electronics and biological applications, Journal of materials research, 24, 2828 (2009).
doi:10.1557/jmr.2009.0336
Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., and Gratzel, M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc., 80, 3157 (1997).
doi:10.1111/j.1151-2916.1997.tb03245.x
Bhainsa, K. C., and D'Souza S. F., Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids and Surfaces B: Biointerfaces, 47, 160–64 (2006).
doi:10.1016/j.colsurfb.2005.11.026
Bhumkar, D. R., Joshi, H. M., Sastry, M., and Pokharkar V.B., Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin, Pharm Res., 24, 1415-26 (2007).
doi:10.1007/s11095-007-9257-9
Carp, O., Huisman, C. L. and Reller, A., Photoinduced reactivity of titanium dioxide, Prog Solid State Chem., 32, 133 (2004).
doi:10.1016/j.progsolidstchem.2004.08.001
Daizy Philip, Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 374–381 (2009).
doi:10.1016/j.saa.2009.02.037
Devasena, T. and Ravimycin, T., Activity of ketoconazole coated gold nanoparticles against dandruff causing fungi, Asian J biosci., 4, 44-46 (2009a).
Devasena, T. and Ravimycin, T., Ketoconazole coated Silver nanoparticles- A potent antidandruff agent, Int J plant sci., 4, 517-520 (2009b).
Feskanich, D., Ziegler, R., Michaud, D., Giovannucci, E., and Speizer, F., et al., Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women, J Natl Cancer Inst., 92, 1812-23 (2000).
doi:10.1093/jnci/92.22.1812
Gou N, Onnis Hayden A, and Gu A. Z., Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis, Environ Sci Technol., 44, 5964 -70 (2010).
doi:10.1021/es100679f
Ikigai, H., Toda, M., Okubo, S., Hara, Y. and T Shimamura. Relationship between the anti-hemolysin activity and the structure of catechins and theaflavins, Jpn J Bacteriol., 45, 913—919 (1990).
doi:10.3412/jsb.45.913
Ito, S., Inoue, S., Kawada, H., Hara, M. and Iwaski, m., Low-temperature synthesis of nanometer-sized crystalline TiO2 particles and their photoinduced decomposition of formic acid, Colloid Interface Sci., 59, 216 (1999).
Jain, D., Daima, H. K., Kachhwaha, S., and Kothari, S. L., Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest J Nanomat Biostru., 4, 557-63 (2009).
Kannan, P. and John, S. A., Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates, Nanotechnology, 18, 085602 (2008).
doi:10.1088/0957-4484/19/8/085602
Kim, D. O., Lee, K. W., Lee, H. J., and Lee, C. Y., Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals, J Agric Food Chem., 50, 3713–17 (2002).
doi:10.1021/jf020071c
Li L., Sun X., Yang Y., Guan N. and Zhang F., Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell, Chem Asian J., 1, 664-8(2006).
doi:10.1002/asia.200600103
Li, Y., White, T. J. and Lim, S. H., Low-temperature synthesis and microstructural control of titania nano-particles, Journal of solid state chemistry, 177, 1372 (2004).
doi:10.1016/j.jssc.2003.11.016
Manish Hudlikar Shreeram Joglekar, Mayur Dhaygude, and Kisan Kodam, Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. Latex, Materials Letters, 75, 196–199 (2012).
doi:10.1016/j.matlet.2012.02.018
Mohanpuria, P., Rana, N. K. and Yadav, S. K., Biosynthesis of nanoparticles: Technological concepts and future applications, Journal of Nanoparticle Research, 10: 507–517 (2010).
doi:10.1007/s11051-007-9275-x
Mohsen Zargar, Azizah Abdul Hamid, Fatima Abu Bakar, and Mariana Nor Shamsudin, Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L., Molecules, 16, 6667-6676 (2011).
doi:10.3390/molecules16086667
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S. and Sainkar, S. R., Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis, Nano Lett., 1, 515-519 (2001).
doi:10.1021/nl0155274
Naheed Ahmad and Seema Sharma, Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus, Green and Sustainable Chemistry, 2, 141-147 (2012).
doi:10.4236/gsc.2012.24020
Nair N.C. and Henry A.N., Flora of Tamil Nadu, India, 34 (1983).
Rajakumar, G., Abdul Rahuman, A., Priyamvada, B., Gopiesh Khanna, V., and Kishore Kumar, D., Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles, Materials Letters, 68, 115–17 (2012).
doi:10.1016/j.matlet.2011.10.038
Rajesh Mandade, Sreenivas, S. A., Sakarkar, D. M. and Avijit Choudhury, Radical scavenging and antioxidant activity of Hibiscus rosasinensis extract, African Journal of Pharmacy and Pharmacology, 5, 2027-2034 (2011).
Richard W Cheyne, Tim AD Smith, Laurent Trembleau and Abbie C Mclaughlin, Synthesis and characterisation of biologically compatible TiO2 nanoparticles, Nanoscale Research Letters, 6, 423 (2011).
doi:10.1186/1556-276X-6-423
Ruiz, A. M., Sakai, G., Cornet, A., Shimanoe, K., and Morante, J. R., Characterisation and activity of thermally stable TiO2 obtained by hydrothermal process, Sens Actuators B Che., 103, 312 (2004).
doi:10.1016/j.snb.2004.04.061
Sundrarajan, M. and Gowri, S., Green synthesis of titanium dioxide nanoparticles by Nyctanthes Arbor-Tristis leaves extract, Chalcogenide Letters, 8, 447-451 (2011).
Taleb, A., Petit, C., and Pilen, M. P., Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization, Chemistry of Materials, 9, 950–59 (1997).
doi:10.1021/cm960513y
Tanapon Phenrat, Jee Eun Song, Charlotte M Cisneros, Daniel P Schoenfelder and Robert D. Tilton Estimating attachment of nano and sub micrometer-particles coated with organic macromolecules in porous media: Development of an empirical model, Environ Sci. Technol., 44, 4531–4538 (2010).
doi:10.1021/es903959c
Toda, M., Okubo, S., Ikigai, H., and Shimamura T., Antibacterial and antihaemolysin at activities of tea catechins and their structural relative, Jpn J Bacterio., 45, 561-566 (1990).
doi:10.3412/jsb.45.561
Tsao, R., Yang, R., Ch Young and Zhu, H., Polyphenolic profiles in eight apple cultivars using high–performance liquid chromatography (HPLC), J Agric Food Chem., 51, 6347–6353 (2003).
doi10.1021/jf0346298
Vijayalakshmi, R. and Rajendran, V., Synthesis and characterization of nano-TiO2 via different methods, Arch of App Sci Res., 4, 1183-1190 (2012).
Willner, I., Basnar, B. and Willner, B., Nanoparticle–enzyme hybrid systems for nanobiotechnology, FEBS Journal, 274, 302–309 (2007).
doi:10.1111/j.1742-4658.2006.05602.x