Titania Nanoparticles Modified with Nitrogen: Enhanced Visible-light Photocatalytic Activity
J. Environ. Nanotechnol., Volume 3, No 4 (2014) pp. 67-72
Abstract
Titanium dioxide (TiO2), for instance, is one of the most popular and promising materials in heterogeneous photocatalytic application. Several attempts have been made to induce bathochromic (red) shifts of the band gap of Titania in order to utilize the solar light. In this study we have reported the synthesis of nitrogen doped TiO2 nanoparticles by sol-gel method using urea and ammonia as the nitrogen source and by direct oxidation of TiN were tested for visible-light photocatalytic degradation of methylene blue and phenol. The catalysts were characterized by N2 adsorption desorption studies, X-ray diffraction and Diffuse reflectance UV-visible spectroscopy techniques. The chemically modified TiO2 shows strong absorption for visible light and high activities for the degradation of methylene blue and phenol aqueous solution. The presence of two different surface states characteristics of Pure and nitrogen doped TiO2 was confirmed by the shift in absorption from 398 nm to 405 nm and 409 nm from the DRUV-Visible spectral results. The spherical morphology of the catalysts was observed from the SEM images.
Full Text
Reference
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science., 293, 269–271 (2001).
doi:10.1126/science.1061051
Bahnemann, D. W., Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering, Res. Chem. Intermed., 26, 207-220 (2000).
doi:10.1163/156856700X00255
Beydilli, M. I., Pavlostathis, S. G. and Tincher, W. C., Biological decolorization of the azo dye reactive red 2 under various oxidation-reduction conditions, Water Environ. Res., 72, 698-705 (2000).
doi:10.2175/106143000X138319
Rafols, C. and Barcelo, D., Determination of mono- and disulphonated azo dyes by liquid chromatography–atmospheric pressure ionization mass spectrometry, J. Chromatogr. A., 777, 177–192 (1997).
doi:10.1016/S0021-9673(97)00429-9
Choi, W., Termin, A. and Hoffmann, M. R., The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669-13679 (1994).
doi:10.1021/j100102a038
Davydov, L., Reddy, E. P., France, P., and Smirniotis P.G., Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders, Appl. Catal. B., 32, 95–105 (2001).
doi:10.1016/S0926-3373(01)00126-6
Forgas, E., Cserhati, T. and Oros, G., Removal of synthetic dyes from wastewater: A review, Environ. Intl., 30, 953–971 (2004).
doi:10.1016/j.envint.2004.02.001
Fox, M. A. and Dulay, M. T., Heterogeneous Photocatalysis, Chem. Rev., 93, 341-357 (1993).
doi:10.1021/cr00017a016
Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).
doi:10.1038/238037a0
Guaratini, C. and Zanoni, M., Textile Dyes, Quimica Nova. 23, 71–79 (2000).
doi:10.1590/S0100-40422000000100013
Gurulakshmi, M., Selvaraj, M., Selvamani, A., Vijayan, P., Sasi Rekha, N. R., and Shanthi, K., Enhanced visible-light photocatalytic activity of V2O5/S–TiO2 nanocomposites, Appl. Catal. A:Gen., 449, 31–46 (2012).
doi:10.1016/j.apcata.2012.09.039
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann. J.M., Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B., 31, 145–157 (2001).
doi:10.1016/S0926-3373(00)00276-9
Kim, S. W., Khan, R., Kim, T. J., and Kim, W. J., Visible-light induced Photocatalytic degradation of 4–chlorophenol and phenolic compounds in aqueous suspension of pure Titania: Demonstrating the existence of a surface-complex mediated path, Bull. Korean Chem. Soc. 29, 6-9 (2008).
Koyuncu, I., Direct filtration of Procion dye bath wastewaters by nanofiltration membranes: flux and removal characteristics, J. Chem. Tech. Biotechnol., 78, 1219-1224 (2003).
doi:10.1002/jctb.924
Liakou, S., Zissi, U., Kornaros, M. and Lyberatos, G., Combined chemical and biological treatment of azo dye-containing wastewaters, Chem. Eng. Commun., 190, 645-661 (2003).
doi:10.1080/00986440302108
Liu, J., Qin, W., Zuo, S., Yu, Y. and Hao, Z., Solvothermal induced phase transition and visible photocatalytic activity of nitrogen-doped titania, J. Hazard. Mater., 163, 273-278 (2009).
doi:10.1016/j.jhazmat.2008.06.086
Liu, R. L. H., Chiu, H. M. and Yeh R. Y. L., Colloid interaction and coagulation of dye wastewater with extra application of magnetites, Int. J. Environ. Stud., 59, 143-158 (2002).
doi:10.1080/00207230211965
Ohno, T., Mitsui, T. and Matsumura, M., Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett., 32 (2003) 364-365.
doi:10.1246/cl.2003.364
Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X. and Zou, Z., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal., B: Environ., 69, 138-144 (2007).
doi:10.1016/j.apcatb.2006.06.015
Saha, N. C. and Tompkins, H. G., Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study, J. Appl. Phys., 72, 3072-3080 (1992).
doi:10.1063/1.351465
Sanghi, R. and Bhattacharya, B., Review on decolorisation of aqueous dye solutions by low cost adsorbents, Res. J. Can.,118, 256-269 (2002).
Sathish, M., Viswanathan, B., Viswanath, R. P. and Gopinath, C. S., DFT studies on hetero atom (N or/and S) substitution in TiO2, Chem. Mater., 17, (2005) 6349-6353.
doi:10.1021/cm052047v
Weber, E.J. and Stickney, V.C., Hydrolysis kinetics of Reactive Blue 19-Vinyl Sulfone, Water Res., 27, (1993) 63–67.
doi:10.1016/0043-1354(93)90195-N