Open Access

Biogenic Synthesis of Silver Nanoparticles using Chromolaena odorata Leaf Extract and its Antioxidant, Antimicrobial, and Anticancer Activities

M. Swarnalatha, swarnalathaslvm@gmail.com
Department of Zoology, Emerald Heights College for Women, Ooty, TN, India
R. Ragunathan, Department of Biotechnology, Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore, TN, India Jesteena Johney, Department of Biotechnology, Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore, TN, India R. Vishnupriya Department of Biotechnology, Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp.

https://doi.org/10.13074/jent.2024.12.243876

PDF


Abstract

         An attempt was made in this work to biosynthesize silver nanoparticles (AgNPs) from aqueous leaf extract of Chromolaena odorata. Qualitative analysis of phytochemicals revealed the presence of alkaloids, terpenoids, proteins, sterols, quinones, flavonoids, tannins, saponins, and phenolics in the aqueous extract of C. odorata leaves. The separation of constituents in the aqueous extract was done using Thin-layer Chromatography. Total flavonoid content, phenolic content, and total antioxidant activity were investigated and were estimated to be 26.43 μg/ml, 63.74 mg/g GAE, and 41.45 μg/ml respectively. The characterization of the synthesized C. odorata extract-mediated AgNPs was done by UV-Vis absorption spectroscopy, Fourier Transform Infra-Red Spectroscopy, and Field Emission Scanning Electron Microscopy. The result of antibacterial activity by the Agar well diffusion method showed that all the test isolates were susceptible to the synthesized AgNPs. The MTT assay results demonstrated that the synthesized AgNPs had an antiproliferative impact on the MCF 7 cell line, with IC50 values of 96.34 µg/ml. As confirmed by acridine orange-ethidium bromide staining, AgNPs induced apoptosis in cancer cells. These findings suggest that C. odorata-synthesized AgNPs induce apoptosis and inhibit cell growth and proliferation.

Full Text

Reference


Alomar, T. S., AlMasoud, N., Awad, M. A., El-Tohamy, M. F. and Soliman, D. A., An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications, Mater. Chem. Phys., 249, 123007 (2020).

https://doi.org/10.1016/j.matchemphys.2020.123007

Bishoyi, A. K., Sahoo, C. R., Samal, P., Mishra, N. P., Jali, B. R., Khan, M. S. and Padhy, R. N., Unveiling the antibacterial and antifungal potential of biosynthesized silver nanoparticles from Chromolaena odorata leaves, Sci. Rep., 14(1), 7513 (2024).

https://doi.org/10.1038/s41598-024-57972-5

Buttacavoli, M., Albanese, N. N., Di Cara, G., Alduina, R., Faleri, C., Gallo, M., Pizzolanti, G., Gallo, G., Feo, S., Baldi, F. and Cancemi, P., Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation, Oncotarget, 9(11), 9685–9705 (2018).

https://doi.org/10.18632/oncotarget.23859

Cowan, M. M., Plant Products as Antimicrobial Agents, Clin. Microbiol. Rev., 12(4), 564–582 (1999).

https://doi.org/10.1128/CMR.12.4.564

El-Jemli, M., Kamal, R., Marmouzi, I., Zerrouki, A., Cherrah, Y. and Alaoui, K., Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.), Adv. Pharmacol. Sci., 2016, 1–6 (2016).

https://doi.org/10.1155/2016/6392656

Farah, M. A., Ali, M. A., Chen, S. M., Li, Y., Al-Hemaid, F. M., Abou-Tarboush, F. M., Al-Anazi, K. M. and Lee, J., Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species, Colloids Surf., B, 141, 158–169 (2016).

https://doi.org/10.1016/j.colsurfb.2016.01.027

Halliwell, B. and Gutteridge, J. M. C., Free Radicals in Biology and Medicine, Oxford University Press, (2015).

https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

Hasyim, S. and John, A., Green Synthesis of Silver Nanoparticles Using Leaves of Chromolaena odorata and its Antioxidant Activity, J. Trop. Life Sci., 13(2), 305–310 (2023).

https://doi.org/10.11594/jtls.13.02.08

Javed, I., Hussain, S. Z., Shahzad, A., Khan, J. M., Ur-Rehman, H., Rehman, M., Usman, F., Razi, M. T., Shah, M. R. and Hussain, I., Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—In-vitro and in-vivo study, Colloids Surfaces B Biointerfaces, 141, 1–9 (2016).

https://doi.org/10.1016/j.colsurfb.2016.01.022

Jaya, P. M., Ragunathan, R. and Jesteena, J., Evaluation of bioactive compounds from Jasminum polyanthum and its medicinal properties, J. Drug Deliv. Ther., 9(2), 303–310 (2019).

https://doi.org/10.22270/jddt.v9i2.2413

Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., Ullah, M. F., Bibi, H., Bafakeeh, O. T., Khedher, N. Ben, Eldin, S. M., Fadhl, B. M. and Khan, M. I., Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review, Catalysts, 12(11), 1386 (2022).

https://doi.org/10.3390/catal12111386

Küp, F. Ö., Çoşkunçay, S. and Duman, F., Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Mater. Sci. Eng. C, 107, 110207 (2020).

https://doi.org/10.1016/j.msec.2019.110207

Li, W., Ma, G., Wu, Q., Liu, Y., Liu, X. and Wang, J., Withdrawn: Effects of clinicopathological factors on prognosis of young patients with breast cancer, Oncotarget, Medicine (Baltimore)., 100(5), 1-8 (2021).

https://doi.org/10.18632/oncotarget.24062

Linima, V. K., Ragunathan, R. and Johney, J., Biogenic synthesis of RICINUS COMMUNIS mediated iron and silver nanoparticles and its antibacterial and antifungal activity, Heliyon, 9(5), e15743 (2023).

https://doi.org/10.1016/j.heliyon.2023.e15743

Liu, R. H., Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action, J. Nutr., 134(12), 3479S-3485S (2004).

https://doi.org/10.1093/jn/134.12.3479S

Rajesh, M. K., Muralikrishna, K. S., Nair, S. S., Krishna, K. B., Subramaniya, T. M., Sonu, K. P., Subaharan, K., Sweta, H., Keshava, P. T. S., Neeli, C., Karunasagar, I., Hebber, K. B. and Karun, A., Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties, Mater. Sci. Eng. C, 111, 110834 (2020).

https://doi.org/10.1016/j.msec.2020.110834

Nandiyanto, A.B.D., Oktiani, R. and Ragadhita, R., How to Read and interprete FTIR Spectroscope of Organic Nano-material, Indones. J. Sci. Technol., 4(1): 97–118 (2019).

https://doi.org/10.17509/ijost.v4i1.15796

Nguyen, V. T., Nguyen, M. T., Nguyen, N. Q. and Truc, T. T., Phytochemical Screening, Antioxidant Activities, Total Phenolics and Flavonoids content of Leaves from Persicaria odorata Polygonaceae, IOP Conf. Ser. Mater. Sci. Eng., 991(1), 012029 (2020).

https://doi.org/10.1088/1757-899X/991/1/012029

Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M. and Olefsky, J. M., GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects, Cell, 142(5), 687–698 (2010).

https://doi.org/10.1016/j.cell.2010.07.041

Pitakpawasutthi, Y., Thitikornpong, W., Palanuvej, C. and Ruangrungsi, N., Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves, J. Adv. Pharm. Technol. Res., 7(2), 37 (2016).

https://doi.org/10.4103/2231-4040.177200

Rai, M., Yadav, A. and Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27(1), 76–83 (2009).

https://doi.org/10.1016/j.biotechadv.2008.09.002

Sherin, L., Sohail, A., Amjad, U.-S., Mustafa, M., Jabeen, R. and Ul-Hamid, A., Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants, Colloid Interface Sci. Commun., 37, 100276 (2020).

https://doi.org/10.1016/j.colcom.2020.100276

Siddiqi, K. S., Husen, A. and Rao, R. A. K., A review on biosynthesis of silver nanoparticles and their biocidal properties, J. Nanobiotechnol., 16(1), 14 (2018).

https://doi.org/10.1186/s12951-018-0334-5

Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y., Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnol., Biol. Med., 6(2), 257–262 (2010).

https://doi.org/10.1016/j.nano.2009.07.002

Contact Us

Powered by

Powered by OJS