Biogenic Synthesis of Silver Nanoparticles using Chromolaena odorata Leaf Extract and its Antioxidant, Antimicrobial, and Anticancer Activities
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp.
Abstract
An attempt was made in this work to biosynthesize silver nanoparticles (AgNPs) from aqueous leaf extract of Chromolaena odorata. Qualitative analysis of phytochemicals revealed the presence of alkaloids, terpenoids, proteins, sterols, quinones, flavonoids, tannins, saponins, and phenolics in the aqueous extract of C. odorata leaves. The separation of constituents in the aqueous extract was done using Thin-layer Chromatography. Total flavonoid content, phenolic content, and total antioxidant activity were investigated and were estimated to be 26.43 μg/ml, 63.74 mg/g GAE, and 41.45 μg/ml respectively. The characterization of the synthesized C. odorata extract-mediated AgNPs was done by UV-Vis absorption spectroscopy, Fourier Transform Infra-Red Spectroscopy, and Field Emission Scanning Electron Microscopy. The result of antibacterial activity by the Agar well diffusion method showed that all the test isolates were susceptible to the synthesized AgNPs. The MTT assay results demonstrated that the synthesized AgNPs had an antiproliferative impact on the MCF 7 cell line, with IC50 values of 96.34 µg/ml. As confirmed by acridine orange-ethidium bromide staining, AgNPs induced apoptosis in cancer cells. These findings suggest that C. odorata-synthesized AgNPs induce apoptosis and inhibit cell growth and proliferation.
Full Text
Reference
Alomar, T. S., AlMasoud, N., Awad, M. A., El-Tohamy, M. F. and Soliman, D. A., An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications, Mater. Chem. Phys., 249, 123007 (2020).
https://doi.org/10.1016/j.matchemphys.2020.123007
Bishoyi, A. K., Sahoo, C. R., Samal, P., Mishra, N. P., Jali, B. R., Khan, M. S. and Padhy, R. N., Unveiling the antibacterial and antifungal potential of biosynthesized silver nanoparticles from Chromolaena odorata leaves, Sci. Rep., 14(1), 7513 (2024).
https://doi.org/10.1038/s41598-024-57972-5
Buttacavoli, M., Albanese, N. N., Di Cara, G., Alduina, R., Faleri, C., Gallo, M., Pizzolanti, G., Gallo, G., Feo, S., Baldi, F. and Cancemi, P., Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation, Oncotarget, 9(11), 9685–9705 (2018).
https://doi.org/10.18632/oncotarget.23859
Cowan, M. M., Plant Products as Antimicrobial Agents, Clin. Microbiol. Rev., 12(4), 564–582 (1999).
https://doi.org/10.1128/CMR.12.4.564
El-Jemli, M., Kamal, R., Marmouzi, I., Zerrouki, A., Cherrah, Y. and Alaoui, K., Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.), Adv. Pharmacol. Sci., 2016, 1–6 (2016).
https://doi.org/10.1155/2016/6392656
Farah, M. A., Ali, M. A., Chen, S. M., Li, Y., Al-Hemaid, F. M., Abou-Tarboush, F. M., Al-Anazi, K. M. and Lee, J., Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species, Colloids Surf., B, 141, 158–169 (2016).
https://doi.org/10.1016/j.colsurfb.2016.01.027
Halliwell, B. and Gutteridge, J. M. C., Free Radicals in Biology and Medicine, Oxford University Press, (2015).
https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Hasyim, S. and John, A., Green Synthesis of Silver Nanoparticles Using Leaves of Chromolaena odorata and its Antioxidant Activity, J. Trop. Life Sci., 13(2), 305–310 (2023).
https://doi.org/10.11594/jtls.13.02.08
Javed, I., Hussain, S. Z., Shahzad, A., Khan, J. M., Ur-Rehman, H., Rehman, M., Usman, F., Razi, M. T., Shah, M. R. and Hussain, I., Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—In-vitro and in-vivo study, Colloids Surfaces B Biointerfaces, 141, 1–9 (2016).
https://doi.org/10.1016/j.colsurfb.2016.01.022
Jaya, P. M., Ragunathan, R. and Jesteena, J., Evaluation of bioactive compounds from Jasminum polyanthum and its medicinal properties, J. Drug Deliv. Ther., 9(2), 303–310 (2019).
https://doi.org/10.22270/jddt.v9i2.2413
Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., Ullah, M. F., Bibi, H., Bafakeeh, O. T., Khedher, N. Ben, Eldin, S. M., Fadhl, B. M. and Khan, M. I., Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review, Catalysts, 12(11), 1386 (2022).
https://doi.org/10.3390/catal12111386
Küp, F. Ö., Çoşkunçay, S. and Duman, F., Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Mater. Sci. Eng. C, 107, 110207 (2020).
https://doi.org/10.1016/j.msec.2019.110207
Li, W., Ma, G., Wu, Q., Liu, Y., Liu, X. and Wang, J., Withdrawn: Effects of clinicopathological factors on prognosis of young patients with breast cancer, Oncotarget, Medicine (Baltimore)., 100(5), 1-8 (2021).
https://doi.org/10.18632/oncotarget.24062
Linima, V. K., Ragunathan, R. and Johney, J., Biogenic synthesis of RICINUS COMMUNIS mediated iron and silver nanoparticles and its antibacterial and antifungal activity, Heliyon, 9(5), e15743 (2023).
https://doi.org/10.1016/j.heliyon.2023.e15743
Liu, R. H., Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action, J. Nutr., 134(12), 3479S-3485S (2004).
https://doi.org/10.1093/jn/134.12.3479S
Rajesh, M. K., Muralikrishna, K. S., Nair, S. S., Krishna, K. B., Subramaniya, T. M., Sonu, K. P., Subaharan, K., Sweta, H., Keshava, P. T. S., Neeli, C., Karunasagar, I., Hebber, K. B. and Karun, A., Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties, Mater. Sci. Eng. C, 111, 110834 (2020).
https://doi.org/10.1016/j.msec.2020.110834
Nandiyanto, A.B.D., Oktiani, R. and Ragadhita, R., How to Read and interprete FTIR Spectroscope of Organic Nano-material, Indones. J. Sci. Technol., 4(1): 97–118 (2019).
https://doi.org/10.17509/ijost.v4i1.15796
Nguyen, V. T., Nguyen, M. T., Nguyen, N. Q. and Truc, T. T., Phytochemical Screening, Antioxidant Activities, Total Phenolics and Flavonoids content of Leaves from Persicaria odorata Polygonaceae, IOP Conf. Ser. Mater. Sci. Eng., 991(1), 012029 (2020).
https://doi.org/10.1088/1757-899X/991/1/012029
Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M. and Olefsky, J. M., GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects, Cell, 142(5), 687–698 (2010).
https://doi.org/10.1016/j.cell.2010.07.041
Pitakpawasutthi, Y., Thitikornpong, W., Palanuvej, C. and Ruangrungsi, N., Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves, J. Adv. Pharm. Technol. Res., 7(2), 37 (2016).
https://doi.org/10.4103/2231-4040.177200
Rai, M., Yadav, A. and Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27(1), 76–83 (2009).
https://doi.org/10.1016/j.biotechadv.2008.09.002
Sherin, L., Sohail, A., Amjad, U.-S., Mustafa, M., Jabeen, R. and Ul-Hamid, A., Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants, Colloid Interface Sci. Commun., 37, 100276 (2020).
https://doi.org/10.1016/j.colcom.2020.100276
Siddiqi, K. S., Husen, A. and Rao, R. A. K., A review on biosynthesis of silver nanoparticles and their biocidal properties, J. Nanobiotechnol., 16(1), 14 (2018).
https://doi.org/10.1186/s12951-018-0334-5
Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y., Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnol., Biol. Med., 6(2), 257–262 (2010).