Open Access

Optimization of CVD Synthesis conditions for Synthesis of Multiwalled Carbon Nanotubes using Response Surface Methodology

V. S. Angulakshmi, Department of Chemistry, Kathir College of Engineering, Coimbatore, TN, India. G. Tamilarasan, Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, Coimbatore S. Karthikeyan skmush@rediffmail.com
Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, Coimbatore


J. Environ. Nanotechnol., Volume 3, No 2 (2014) pp. 81-91

https://doi.org/10.13074/jent.2014.03.142066

PDF


Abstract

We report the successful optimization of yield of multiwall carbon nanotube synthesized by chemical vapor deposition on Fe/Mo catalyst supported on silica using Zea mays oil as the carbon source by Chemical Vapour Deposition. The response surface methodology based on Box-Behnken design was applied to investigate the effect of parameters such as reaction temperature, Catalytic ratio and Flow rate of carbon source. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits. High regression coefficient between the variables and the response showed of good evaluation of experimental data by polynomial regression model.

Full Text

Reference


Angulakshmi, V. S., Rajasekar, K., Sathishkumar, C. and Karthikeyan, S., Growth of vertically aligned carbon nanotubes on a silicon substrate by a spray pyrolysis method, New Carbon Mater., 28 (4), 284-288 (2013).

http://dx.doi.org/10.1016/S1872-5805(13)60082-7

Amirhasan Nourbakhsh, Bahram Ganjipour, Mostafa Zahedifar and Ezatollah Arzi, Morphology optimization of CCVD-Synthesized multiwall carbon nanotubes, using statistical design of experiments, Nanotechnol.,18(11), (2007).

http://dx.doi.org/10.1088/0957-4484/18/11/115715

Cassell, A., Delzeit, L., Nguyen, C., Stevens, R., Han, J. and Meyyappan, M., Carbon nanotubes by CVD and applications. J. Phys IV 11(PR3), 401-409, (2001).

http://dx.doi.org/10.1051/jp4:2001351

Cassell, A. M., Verma, S., Delzeit, L., Meyyappan, M. and Han, J., Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes, Langmuir, 17(2), 260-264 (2001).

http://dx.doi.org/10.1021/la001273a

Cassell, A. M., Ng, H. T, Delzeit, L., Ye, Q., Li, J. and Han, J., High throughput methodology for carbon nanomaterials discovery and optimization, Appl. Catal. A - General., 254 (1), 85-96 (2003).

http://dx.doi.org/10.1016/S0926-860X(03)00279-5

Colomer, J. F, Bister, G., Willems, I., Konya, Z., Fonseca, A. and Van Tendeloo, G., Synthesis of single-walled carbon nanotubes by catalytic decomposition of hydrocarbon, Chem. commun., 1343-1344(1999).

http://dx.doi.org/10.1039/a903142a

Colomer, J. F, Stephan, C., Lefrant, S., Van Tendeloo, G., Wilems, I., Konya, Z., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chem. Phys. Lett.317(1-2), 83-89 (2000).

http://dx.doi.org/10.1016/S0009-2614(99)01338-X

Cui, S., Lu, C. Z., Qiao, Y. L. and Cui, L., Large-scale preparation of carbon nanotubes by nickel catalyzed decomposition of methane at 600 0 C, Carbon, 37(12), 2070-2073 (1999).

http://dx.doi.org/10.1016/S0008-6223(99)00218-3

Ebbesen, T. W. and Ajayan, P. M., Large-scale synthesis of carbon nanotubes, Nature, 358(6383), 220-222 (1992).

http://dx.doi.org/10.1038/358220a0

Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H. W. and Sarkar, A., Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon, 33(7), 873-81 (1995).

http://dx.doi.org/10.1016/0008-6223(95)00016-7

Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M. and Dai, H., Self-oriented regular arrays of carbon nanotubes and their fieldemisssion properties, Science,283(5401), 512-514 (1999).

http://dx.doi.org/10.1126/science.283.5401.512

Iijima, Helical microtubules of graphitic carbon, Nature,354(6348), 56-58 (1991).

http://dx.doi.org/10.1038/354056a0

Karthikeyan, S. and Mahalingam, P., Studies of Yield and Nature of Multi-walled carbon nanotubes synthesized by spray pyrolysis of Pine oil at Different Temperatures, Int. J. Nanotech., 4(3), 189-197 (2010).

Kong, J., Franklin, N. R, Zhou, C. W., Chapline, M. G., Peng, S. and Cho, K. J., Nanotube molecular wires as chemical sensor, Science, 287(5453) 622-625 (2000).

http://dx.doi.org/10.1126/science.287.5453.622

Kong, J., Cassell, A.M. and Dai, H., Chemical vapor deposition of methane for single-walled nanotubes, Chem. Phys. Lett., 292(4-6), 567-74 (1998).

http://dx.doi.org/10.1016/S0009-2614(98)00745-3

Kumar, M. and Ando, Y., Single-wall and multi-wall carbon nanotubes from camphor- a botanical hydrocarbon, Diam. Rel. Mater., 12(10-11), 1845-1850 (2003).

http://dx.doi.org/10.1016/S0925-9635(03)00217-6

Kukovecz, A., Konya, Z., Nagaraju, N., Willems, I., Tamasi, A. and Fonseca, A., Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas, Phys. chem. Chem Phys., 2(13), 3071-3076 (2000).

http://dx.doi.org/10.1039/b002331k

Li, W. Z., Xie, S., Qian, L. X., Chang, B. H., Zou, B. S. and Zhou, W. Y., Large-scale synthesis of aligned carbon nanotubes, Science,274(5293), 1701-1703 (1996).

http://dx.doi.org/10.1126/science.274.5293.1701

Liu, W. W., Aziz, A., Chai, S. P., Mohamed, A. R. and Tye, C. T., Optimization of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, Can. J. Chem. Eng.,90, 489-505 (2012).

http://dx.doi.org/10.1002/cjce.20561

Mukul Kumar and Yoshinori Ando, A simple method of producing aligned carbon Nanotubes from an unconventional precursor-camphor, Chem. Phys. Lett., 374(5-6), 521-526 (2003).

http://dx.doi.org/10.1016/S0009-2614(03)00742-5

Montgomery, D. C., Design and analysis of Experiments, 5 th edition, John Wiley and sons, New York (2000).

Myers, R. H., Response surface methodology, Ally & Bacon, Boston, 372-375 (1971).

Ng, H. T., Chen, B., Koehne, J. E., Cassell, A. M., Li, J. and Han, J., Growth of carbon nanotubes: a combinatorial method to study the effects of catalysts and underlayers, J. Phys.Chem. B,107 (33), 8484-89 (2003).

http://dx.doi.org/10.1021/jp034198w

Pradip Ghosh, Rakesh A.Afre, Soga , T., Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor : Eucalyptus oil, Mater. Lett., 61, 3768-70 (2007).

http://dx.doi.org/10.1016/j.matlet.2006.12.030

Rakesh, A., Afre, Soga, T., Jimbo, T., Mukul Kumar, Ando, Y. and Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine Oil, Chem. Phys. Lett., 414(6-10), (2005).

http://dx.doi.org/10.1016/j.cplett.2005.08.040

Tang, H., Chen, J. H., Huang, Z. P., Wang, D. Z., Ren, Z. F. and Nie, L. H., High disper sion and electrocatlytic properties of platinum on wellaligned carbon nanotube arrays, Carbon,42(1), 191-197 (2004).

http://dx.doi.org/10.1016/j.carbon.2003.10.023

Tans, S. J, Devoret, M. H, Dai, H. J, Thess, A., Smalley, R. E. and Geerligs, L. J., Individual single-wall carbon nanotubes as quantum wires, Nature, 386 (6624), 474-477 (1997).

http://dx.doi.org/10.1038/386474a0

Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P. and Robert, J., Crystalline ropes of metallic carbon nanotubes, Science,273(5274) 483-7 (1996).

http://dx.doi.org/10.1126/science.273.5274.483

Tibbetts, G. G, Meisner, G. P. and Olk, G. H., Hydrogen storage capacity of carbon nanotubes, filaments and vapor- grown fibers, Carbon, 39(15), 2291-2301 (2001).

http://dx.doi.org/10.1016/S0008-6223(01)00051-3

Yochi Murakami, Yuhei Miyauchi, Shohei Chiashi, and Maruyama, S., Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol, Chem.Phys. Lett., 374, 53-58 (2003).

http://dx.doi.org/10.1016/S0009-2614(03)00687-0

Contact Us

Powered by

Powered by OJS