Reduction of Azo Dye from Aqueous Solution using Acid Treated Aquatic Macrophytes
J. Environ. Nanotechnol., Volume 3, No 2 (2014) pp. 50-61
Abstract
Azo compounds constitute the largest and the most diverse group of synthetic dyes and are widely used in a number of industries such as textile, food, cosmetics and paper printing. They are generally recalcitrant to biodegradation due to their xenobiotic nature. However, aquatic macrophytes are highly versatile in reduction of azo dyes due to their porous nature. In this study, adsorption of an industrial azo dye Metanil Yellow on to acid treated and non-treated biosorbent is investigated. In addition, the study emphasize on identifying the factors exerting the strongest influence on adsorption of dye. The effect of the process parameters such as contact time, adsorbent dose, pH and agitation speed are reported. The contact time of 120 min is found to be sufficient for the adsorption to reach equilibrium. The pseudo first & second order models are used to describe the kinetic data, and the rate constant is therefore evaluated. The dye adsorption to biosorbent is characterized by monolayer isotherm and caused by adsorption with relatively strong uptake. The Langmuir and Freundlich models adsorption are applied to describe the isotherm equilibrium and to determine its constants. The Langmuir and Freundlich models agree well with the experimental data with an adsorption capacity of 91.743 & 85.179 mg of dye per gram of acid treated and non-treated biosorbent respectively. A better fixation was obtained at acidic pH.
Full Text
Reference
Aksu, Z. and isoglu, I. A., Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp, Process Biochem.,40, 3031-3044 (2005).
http://dx.doi.org/10.1016/j.procbio.2005.02.004
Alkan, M., DemirbaÅŸ, O. and Dogan, M., Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite, Microporous Mesoporous Mater., 101(3), 388-396 (2007).
http://dx.doi.org/10.1016/j.micromeso.2006.12.007
Banat. F, Al-Asheh. S, Al-Makhadmeh. L. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem.,39, 193-202 (2003).
http://dx.doi.org/10.1016/S0032-9592(03)00065-7
Baskar alingam, P., Pulikesi, M., Elango, D., Ramamurthi, V. and Sivanesan, S., Adsorption of acid dye onto organobentonite, J. Hazard. Mater. 128, 138-144 (2006).
http://dx.doi.org/10.1016/j.jhazmat.2005.07.049
Bourikas, K., Stylidi, M., Kondarides, D. I. and Verykios, X. E., Adsorption of Acid Orange 7 on the surface of titanium dioxide. Langmuir., 21, 9222-9230 (2005).
http://dx.doi.org/10.1021/la051434g
Capar, G., Yetis, U. and Yilmaz, L., Membrane based strategies for the pre-treatment of acid dye bath wastewaters, J. Hazard. Mater., 135, 423-430 (2006).
http://dx.doi.org/10.1016/j.jhazmat.2005.12.008
Chang, J., Chou, C., Lin, Y., Lin, P., Ho, J., Hu, T. L., Kinetic characteristics of bacterial azo-dye decolorization by pseudomonas luteola, Water Res.,35, 2841-2850 (2001).
http://dx.doi.org/10.1016/S0043-1354(00)00581-9
Chung, K. T., Fulk, G. E., Egan, M.. Reduction of azo dyes in intestinal anerobes. Appl. Environ. Microbiol., 35, 558-562 (1978).
Crini, G., Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol.,97, 1061-1085 (2006).
http://dx.doi.org/10.1016/j.biortech.2005.05.001
Emmert Iii, F. L., Thomas, J., Hon, B. and Gengenbach, A. J., Metalloporphyrincatalyzed oxidation of methyl yellow and related azo compounds, Inorganica Chimica Acta , 361, 2243-2251 (2008).
http://dx.doi.org/10.1016/j.ica.2007.09.048
Freundlich, H., Adsorption in solution, Phys. Chem. Soc.,40, 1361-1368 (1906). Fu, F., Viraraghavan, T., Fungal decolorization of dye wastewaters: a review, Bioresour Technol., 79, 251-262 (2001).
http://dx.doi.org/10.1016/S0960-8524(01)00028-1
Georgiou, D., and Aivasidis, A., Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria, J. Hazard. Mater., 135, 372-377 (2006).
http://dx.doi.org/10.1016/j.jhazmat.2005.11.081
Gomez, V., Larrenchi, M. S., Callao, M. P., Kinetics and Adsorption Study of Acid Dye Removal using Activated Carbon, Chemosphere.,69, 1151-1158 (2007).
http://dx.doi.org/10.1016/j.chemosphere.2007.03.076
Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., and Suhas., Low-cost adsorbents: growing approach to wastewater treatment-A review, Crit. Rev. Env. Sci Technol.,39, 783-842 (2009).
http://dx.doi.org/10.1080/10643380801977610
Gupta, V. K., Imran, A. and Saini, V. K., Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material, J. Hazard. Mater., 315, 87-93 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.06.063
Gupta, V. K., Mittal, A., Kurup, L. and Mittal, J., Adsorption of a hazardous dye, erythrosine, over hen feathers,Hazard. Mater., 304, 52-57 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.08.032
Gupta, V. K., Mittal, A., Vibha, G. and Mittal, J., Adsorption of basic fuchs in using waste materials -bottom ash and deoiled soya - as adsorbents, J. Hazard. Mater., 319, 30-39 (2008).
http://dx.doi.org/10.1016/j.jcis.2007.09.091
Hall, K. R., L. C., Eagleton, A., Acrivos and VerMeulen, V., Pore and Solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund.5(2), 212-223 (1966).
Ho, Y. S. and McKay G., A compar ison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot.,76, 332-340 (1998).
http://dx.doi.org/10.1205/095758298529696
Ho, Y. S. and McKay, G., Kinetic of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-7 (1998).
http://dx.doi.org/10.1002/cjce.5450760419
Kannan, C., Sundaram, T. and Palvannan, T., Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution, J. Hazard. Mater., 157, 137-145 (2008).
http://dx.doi.org/10.1016/j.jhazmat.2007.12.116
Karthikeyan, S. and Sivakumar, P., The effect of avtivating agent on te activated carbon prepared from ferronia limonia (L) swingle wood apple shell, J. Environ. Nanotechnol., 1(1), 05-12 (2012).
http://dx.doi.org/10.13074/jent.2012.10.121009
Langmuir, I., The adsorption of gases on surfaces of glass, mica and platinum, J. Am. Chem. Soc.,40: 1361-1368 (1918).
http://dx.doi.org/10.1021/ja02242a004
Liu, P. and Zhang, L., .Adsorption of dyes from aqueous solutions or suspensions with clay nanoadsorbents, Sep. Purifi. Technol., 58, 32-39 (2007).
http://dx.doi.org/10.1016/j.seppur.2007.07.007
Low, K. S., Lee, C. K., Tan. K. K., Biosorption of basic dyes by water hyacinth roots, Bioresour. Technol. 5, 79-83 (1995).
http://dx.doi.org/10.1016/0960-8524(95)00007-2
Maheria, K. C., Chudasama, U. V., Sorptive removal of dyes using titanium phosphate, Ind. Eng. Chem. Res., 46, 6852-6857 (2007).
http://dx.doi.org/10.1021/ie061520r
McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R. and Smyth, W. F., Microbial decolourisation and degradation of textile dyes, Appl. Microbiol. Biotechnol., 56, 81-87 (2001).
Messina, P. V. and Schulz, P. C., Adsorption of reactive dyes on titania-silica mesoporous materials., J. Hazard. Mater.,299, 305-320 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.01.039
Nanthakumar, K., Kar thikeyan, K. and Lakshmanaperumalsamy, P., Investigation on Biosorption of Reactive Blue 140 by Dead Biomass of Aspergillus niger HM11: Kinetics and Isotherm Studies, Global J. Biotechnol Biochem., 4 (2), 169-178 (2009).
Ozcan, A. S., Erdem, B., Ozcan, A., Adsorption of Acid Blue 193 from aqueous solutions onto Nabentonite and DTMA- bentonite, J. Colloid Interface Sci.,280, 44-54 (2004).
http://dx.doi.org/10.1016/j.jcis.2004.07.035
Ozcan, A., Omeroglu, C., Erdogan, Y., Ozcan, A. S., Modification of Bentonite with a Cationic Surfactant: An Adsorption Study of Textile Dye, J. Hazard. Mater.,140, 173-179 (2007).
http://dx.doi.org/10.1016/j.jhazmat.2006.06.138
Pavan, F. A., Dias, S. L. P., Lima, E. C., Benvenutti, E. V., Removal of Congo red from aqueous solution by aniline propyl silica xerogel, Dye Pigments., 76, 64-69 (2008).
http://dx.doi.org/10.1016/j.dyepig.2006.08.027
Pearce, C. I., Lloyd, J. R., Guthrie, J. T., The removal of colour from textile wastewater using whole bacterial cells: A review, Dyes Pigments., 58, 179-196 (2003).
http://dx.doi.org/10.1016/S0143-7208(03)00064-0
San, M. G., Lambert, S. D., Graham, N. J., The regeneration of field-spent granular-activated carbons, Water Res., 35, 2740-2748 (2001).
http://dx.doi.org/10.1016/S0043-1354(00)00549-2
Shi, B., Li, G., Wang, D., Feng, C. and Tang, H., Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, J. Hazard. Mater., 143, 567-574 (2007).
http://dx.doi.org/10.1016/j.jhazmat.2006.09.076
Shu, H. Y., Chang, M. C., Yu, H. H. and Chen, W. H., Reduction of an azo dye Acid Black 24 solution using synthesized nanoscalezerovalent iron particles, J. Colloid Interface. Sci., 314, 89-97 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.04.071
Valix, M., Cheung, W. H. and McKay, G., Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye, Langmuir, 22, 4574–4582 (2006).
http://dx.doi.org/10.1021/la051711j
Wang, H. L., Chen, J. L., Zhai, Z. C., Study on thermodynamics and kinetics of adsorption of p-toluidine from aqueous solution by hypercross linked polymeric adsorbents. Environ. Chem., 23(2), 188-192 (2004).
Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M. and Upatham, E. S., Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodelapolyrrhiza), Environ. Pollut., 125, 385-392 (2003).
http://dx.doi.org/10.1016/S0269-7491(03)00107-6