Open Access

Optimization of Marine bacteria Enterococcus sp. Biomass Growth by using Response Surface Methodology

S. Rajeshkumar, Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarjuruchi, TN, India. G. Gnana Jobitha, Department of chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India. C. Malarkodi, Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, TN, India. C. Kannan, chellapandiankannan@gmail.com
Department of Chemistry, Manonmaniam Sundaranar University, Tiruelveli, TN, India
G. Annadurai Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India


J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 20-27

https://doi.org/10.13074/jent.2013.02.121022

PDF


Abstract

Enterococcus sp. is one of the most important causes of substantial infections worldwide. It is a fastidious micro organism with fine nutritional and environmental requirements to cultivate, a characteristic that prevents the development of useful animal models to study the biology of the micro organism. This study was designed to determine optimal conditions for culture and growth of Enterococcus sp. The bacteria Enterococcus sp. was selected from isolates of marine water. Response surface methodology was employed to optimize a bacterial biomass growth. The five variables involved in the study of growth conditions were Yeast extract, beef extract, NaCl concentration, pH and Temperature. This is an estimate of the fraction of overall variation in the data accounted by the model, and thus the model is capable of explaining 99.96% of the variation in response

Full Text

Reference


Anbu, P., Gopinath, S.C.B., Hilda, A., Priya, T. L. and Annadurai G., Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity, Enzyme and Microbial Technology ( 36), 639–647(2005) .

Angulakshmi, V.S., Sivakumar, N., Karthikeyan, S., Response Surface Methodology for Optimizing Process Parameters for Synthesis of Carbon Nanotubes, J.Environ. Nanotechnol., 1(1), 40-45 (2012).

http://dx.doi.org/10.13074/jent.2012.10.121019

Annadurai, G., Juang, R.S., and Leea, D.J., Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge, Waste Management 22, 703-710 (2002).

http://dx.doi.org/10.1016/S0956-053X(02)00050-8

Bhat, D.J., Bhargava D.S. and Penesar, P.S., Effect of pH on phenol removal in moving media reactor, Indian J. Environ. Health. 25 , 261–267 (1983). .

Box, G.E.P.and Behnken, D.W., Three level design for the study of quantitative variables, Technometrics. 2: 455 475 (1960).

Box, G.E.P. and Hunter, I.S., Multifactor experimental design for explaining response surface. Annual Mathematics Statististics, 28,195 241 (1957).

Cochran, W.C. and Cox, D.W., Experimental Design. John Wiley and Sons, Inc, New York, 611 626 (1968).

Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., VenkateshBabu, S., Senthilkumar, S.R. and Sangiliyandi, G., Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology, Bioresource Technology., 99 (17), 8170-8174 (2008).

http://dx.doi.org/10.1016/j.biortech.2008.03.018

Dhanya, G., Swetha, S., Madhavan NK, Rajeev S and Ashok P Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens, Bioresource Technology., 99 (11), 4597-4602 (2008).

http://dx.doi.org/10.1016/j.biortech.2007.07.028

Dyal, S.D., Bouzidi, L. and Narine, S.S., Maximizing the production of ?-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation, Food Research International., 38, 815-829 (2005).

http://dx.doi.org/10.1016/j.foodres.2005.04.002

Fang, X .L., Feng, J. T., Zhang, W. G., Wang, Y .H. and Zhang, X.,. Optimization of growth medium and fermentation conditions for improved antibiotic activity of Xenorhabdus nematophila TB using a statistical approach, African Journal of Biotechnology, 9 (47), 8068-8077 (2010).

Gawande, B. N. and Patkar A. Y., Application of factorial design for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22, Biotechnol. Bioeng, 64, 168-172(1999).

http://dx.doi.org/10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5

Gohel, V., Jiwan, D., Vyas, P., and Chatpar, H. S., Statistical optimization of chitinase production by Pantoea dispersa to enhance degradation of crustacean chitin waste, J. Microbiol. Biotechnol., 15, 197-201 (2005).

Gopinath, S.C.B., priya, T.L., and Annadurai, G., Purification of lipase from Cunninghamella verticillata and optimization of enzyme activity using response surface methodology, World Journal of microbiology & biotechnology 18, 449-458 (2002).

http://dx.doi.org/10.1023/A:1015579121800

Holt, J.G., Krieg, R.N., Sneath, P.H.A., Staley, J.T., Williams, S.T., Bergey’s Manual of Determinative Bacteriology., 9th Ed., Williams and Wilkins, Baltimore (1994). 

Jensen, P.R, Fenical, W., Strategies for the Discovery of Secondary Metabolites from Marine Bacteria: Ecological Perspectives, Annual Review of Microbiology, 48, 559-584 (1994).

http://dx.doi.org/10.1146/annurev.mi.48.100194.003015

Johnvesly, B., Naik, G.R., Studies on production of thermostable alkaline protease from thermophilic and alkalophilic Bacillus sp., JB-99 in a chemically defined medium, Process Biochem, 37,139-144 (2001).

http://dx.doi.org/10.1016/S0032-9592(01)00191-1

Joo, H.S., Ganesh Kumar, C., Gun-Chun, P., Ki Tae, K., Seung, R., Paik, Chang, C. S., Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii, Process Biochemistry 38, 155-159 (2002).

http://dx.doi.org/10.1016/S0032-9592(02)00061-4

Kumari, A., Mahapatra, P., Banerjee, R., Statistical Optimization of Culture Conditions by Response Surface Methodology for Synthesis of Lipase with Enterobacter aerogenes., Brazilian Archives Of Biology And Technology, 52 (6), 1349-1356 (2009).

http://dx.doi.org/10.1590/S1516-89132009000600005

Lee, S.L. and Chen, W.C., Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology, Enzyme and Microbial Technology, 21, 436-440 (1997).

http://dx.doi.org/10.1016/S0141-0229(97)00016-1

Liew, S.L., Ariff, A.B., Raha, A.R., Ho, Y.W., Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology, Int. J. Food Microbiol, 102, 137–142 (2005).

http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.009

Lima Cristian, J. B., Luciana, F. Coelho, Jonas Contiero., The Use of Response Surface Methodology in Optimization of Lactic Acid Production: Focus on Medium Supplementation, Temperature and pH Control, Food Technol Biotechnol. 48 (2), 175–181 (2010).

Maddon, I.S. and Richard, S.H., Use of response surface methodology for rapid optimization of microbiological media, Journal of Applied Bacteriology., 43, 197-204 (1977).

http://dx.doi.org/10.1111/j.1365-2672.1977.tb00743.x

Myers, R.H. and Montgomery, D.C., Response surface methodology: process and product optimization using designed experiments, Wiley-Interscience (1995).

Rahman, R.A., Illias, R.M., Nawawi, M.G.M., Ismail, A.F., Hassan, O. and Kamaruddin, K., Optimisation of growth medium for the production of cyclodextrin glucanotransferase from Bacillus stearothermophilus HR1 using response surface methodology, Process Biochemistry. 39, 2053-2060 (2004).

http://dx.doi.org/10.1016/j.procbio.2003.10.014

Wang, J, Wan, W., Experimental design methods for fermentative hydrogen production: A review, International journal of hydrogen energy, 34, 235-244 (2008).

http://dx.doi.org/10.1016/j.ijhydene.2008.10.008

Contact Us

Powered by

Powered by OJS