Open Access

Nanosensors for Monitoring and Detecting Nanoparticle Effects on Crops

Pinki Kumari, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India Anza, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India Rajeev Kumar, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India Archana Kumar , Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India Ravi Kant Singh rksingh1@amity.edu
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India


J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 37-51

https://doi.org/10.13074/jent.2025.03.2511272

PDF


Abstract

Nanotechnology has revolutionized biosensing in agriculture, offering unprecedented capabilities to monitor and enhance crop growth, detect contaminants, and ensure food safety. This review explores the applications of nanosensors in numerous aspects of agriculture, ranging from crop management to environmental monitoring. The paper begins with an exploration of biosensors and nanosensors, elucidating their essential characteristics and diverse applications in detecting biomolecules, toxic materials, and disease markers. Catalytic electrochemical biosensors, carbon nanotubes (CNTs), graphene nanosensors, and molecular nanosensors emerge as pivotal tools, showcasing remarkable sensitivity and specificity in diverse agricultural settings. This emphasizes the importance of studying nanoparticle impacts on crops, noting the potential of nanotechnology to improve plant growth, nutrient uptake, and pest control. It addresses concerns such as nanoparticle toxicity and environmental effects, stressing the need for responsible implementation and regulatory oversight. The passage also discusses recent progress in detection methods, including colorimetric optical nanosensors and microcavity sensors, which show promise for identifying trace explosives and monitoring environmental conditions. In summary, this paper highlights nanotechnology's transformative role in agriculture, providing insights into its opportunities, obstacles, and future prospects. Nanotechnology has the potential to revolutionize crop management practices and ensure food safety, playing a crucial role in developing sustainable and resilient food systems for the future.

Full Text

Reference


Abdel, K. R., Reda, Y., and Abdel, F. A., Review—Nanostructured Materials-Based Nanosensors, J. Electrochem. Soc., 167(3), 037554(2020).

https://doi.org/10.1149/1945-7111/ab67aa

Adam, T. and C. B. Gopinath, S., Nanosensors: Recent perspectives on attainments and future promise of downstream applications, Process Biochem., 117, 153–173(2022).

https://doi.org/10.1016/j.procbio.2022.03.024

Adegoke, O. and Nic, D. N., Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective, Emerging Top Life Sci., 5(3), 367–379 (2021).

https://doi.org/10.1042/ETLS20200281

Ali, S., Mehmood, A. and Khan, N., Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation, J. Nanomater., 2021(1), 1–17(2021).

https://doi.org/10.1155/2021/6677616

Arora, S., Murmu, G., Mukherjee, K., Saha, S. and Maity, D., A comprehensive overview of nanotechnology in sustainable agriculture, J. Biotechnol., 355, 21–41 (2022).

https://doi.org/10.1016/j.jbiotec.2022.06.007

Atta, N. F., Galal, A. and Ads, E. E. H., Graphene — A Platform for Sensor and Biosensor Applications, Biosens. Micro Nanoscale Appl., (2015).

https://doi.org/10.5772/60676

Avellan, A., Yun, J., Morais, B. P., Clement, E. T., Rodrigues, S. M. and Lowry, G. V., Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation, Environ. Sci. Technol., 55(20), 13417–13431(2021).

https://doi.org/10.1021/acs.est.1c00178

Bakht, B. K., Iftikhar, M., Gul, I., Ali, M. A., Shah, G. M. and Arshad, M., Effect of nanoparticles on crop growth, Nanomater. Soil Rem., 183–201(2021).

https://doi.org/10.1016/B978-0-12-822891-3.00009-8

Boora, R., Rani, N., Kumari, S., Yashveer, S., Kumari, N. and Grewal, S., Efficacious role of silica nanoparticles in improving growth and yield of wheat under drought stress through stress-gene upregulation, Plant Nano-Bio., 6, 100051(2023).

https://doi.org/10.1016/j.plana.2023.100051

Chanu, S. N. and Swain, B. P., Nanowire Nanosensors for Biological and Medical Application, Springer, 385–393(2021).

https://doi.org/10.1007/978-981-15-8307-0_19

Cheng, R. and Ou, S., Nanocomposite-Based Graphene for Nanosensor Applications, Nanorods Nanocomposites, Infotech, (2020).

https://doi.org/10.5772/intechopen.85136

Chun, Y. Z., Hsin, C. Y., Wang, T. H. and Marcos T. K., Single-quantum-dot-based DNA nanosensor, Nat. Mater., 4, 826–831(2005).

https://doi.org/10.1038/nmat1508

Dai, B., Zhou, R., Ping, J., Ying, Y. and Xie, L., Recent advances in carbon nanotube-based biosensors for biomolecular detection, TrAC Trends Analy. Chem., 154, 116658(2022).

https://doi.org/10.1016/j.trac.2022.116658

DeVoe, E. and Andreescu, S., Review—Catalytic Electrochemical Biosensors for Dopamine: Design, Performance, and Healthcare Applications, ECS Sens. Plus, 3(2), 020601(2024).

https://doi.org/10.1149/2754-2726/ad3950

Ganesan, M. and Nagaraaj, P., Quantum dots as nanosensors for detection of toxics: a literature review, Anal. Methods, 12(35), 4254–4275(2020).

https://doi.org/10.1039/D0AY01293A

Garg, S., Rumjit, N. P. and Roy, S., Smart agriculture and nanotechnology: Technology, challenges, and new perspective, Adv. Agrochem, 3(2), 115–125(2024).

https://doi.org/10.1016/j.aac.2023.11.001

Güven, B., Baz, İ., Kocaoğlu, B., Toprak, E., Erol, B. D. and Soğutmaz, Ö. B., Smart Farming Technologies for Sustainable Agriculture: From Food to Energy, Cham Springer Int. Publish., 481–506(2023).

https://doi.org/10.1007/978-3-031-24942-6_22

Hossain, N., Mobarak, M. H., Mimona, M. A., Islam, M. A., Hossain, A., Zohura, F. T. and Chowdhury, M. A., Advances and significances of nanoparticles in semiconductor applications – A review, Res. Eng., 19, 101347(2023).

https://doi.org/10.1016/j.rineng.2023.101347

Hu, J., Wang, Z., Li, C. and Zhang, C., Advances in single quantum dot-based nanosensors, Chem. Commun., 53(100), 13284–13295(2017).

https://doi.org/10.1039/C7CC07752A

Huang, X., Zhu, Y. and Kianfar, E., Nano Biosensors: Properties, applications and electrochemical techniques, J. Mater. Res. Technol., 12, 1649–1672(2021).

https://doi.org/10.1016/j.jmrt.2021.03.048

Issad, H. A., Aoudjit, R., & Rodrigues, J. J., A comprehensive review of Data Mining techniques in smart agriculture. Engineering in Agriculture Environment and Food, 12(4), 511–525 (2019).

https://doi.org/10.1016/j.eaef.2019.11.003

Izabella, J. J., Anna, M., Dana, C. M., Application of molecular SERS nanosensors: where we stand and where we are headed towards, Anal. Bioanal. Chem., 412, 5999–6007(2020).

https://doi.org/10.1007/s00216-020-02779-2

Jahan, U., Kafeel, U., Naikoo, M. I. and Khan, F. A., Nanoparticles and Their Effects on Growth, Yield, and Crop Quality Cultivated Under Polluted Soil, Springer, 333–352(2022).

https://doi.org/10.1007/978-3-030-97389-6_14

Javaid, M., Haleem, A., Singh, R. P., Rab, S. and Suman, R., Exploring the potential of nanosensors: A brief overview, Sens. Int., 2, 100130(2021).

https://doi.org/10.1016/j.sintl.2021.100130

Juliana, N., Nomura, C. S. and Aline, P. O., Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review, Anal. Bioanal. Chem., 416, 2605-2623(2023).

https://doi.org/10.1007/s00216-023-05076-w

Kashyap, P. L., Kumar, S., Jasrotia, P., Singh, D. P. and Singh, G. P., Nanosensors for Plant Disease Diagnosis: Current Understanding and Future Perspectives, Cham Springer Int. Publish., 189–205(2019).

https://doi.org/10.1007/978-3-319-97852-9_9

Kazi, S. S. L. and Kazi, K. S. L., Nanosensors in Agriculture Field: A Study, Int. J. Appl. Nanotechnol., 10(2), 12–22(2024).

Khan, R. and Andreescu, S., Catalytic MXCeO2 for enzyme-based electrochemical biosensors: Fabrication, characterization, and application towards a wearable sweat biosensor, Biosens. Bioelectr., 248, 115975(2024).

https://doi.org/10.1016/j.bios.2023.115975

Kirtana, A., Abdul, R. and Barathi, S., Nanotechnology and Its Applications in Molecular Detection, In Application of Nanoparticles in Tissue Engineering, Springer Nat. Singapore, 103–117(2022).

https://doi.org/10.1007/978-981-16-6198-3_6

Knudsen, B. R., Jepsen, M. L. and Ho, Y. P., Quantum dot-based nanosensors for diagnosis via enzyme activity measurement, Expert Rev. Mol. Diagn., 13(4), 367–375(2013).

https://doi.org/10.1586/erm.13.17

Kumari, K., Rani, N. and Hooda, V., Silver nanoparticles and silver/silica nanocomposites: Impacts on Z. mays L. growth, nutrient uptake and soil health, Plant Nano-Bio., 7, 100064(2024).

https://doi.org/10.1016/j.plana.2024.100064

Landa, P., Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms, Plant Physiol. Biochem., 161, 12–24(2021).

https://doi.org/10.1016/j.plaphy.2021.01.039

Lee, J., Carbon Nanotube-Based Biosensors Using Fusion Technologies with Biologicals & Chemicals for Food Assessment, Biosens., 13(2), 183(2023).

https://doi.org/10.3390/bios13020183

Li, Z., Yu, T., Paul, R., Fan, J., Yang, Y. and Wei, Q., Agricultural nanodiagnostics for plant diseases: recent advances and challenges, Nanoscale Adv, 2(8), 3083–3094(2020).

https://doi.org/10.1039/C9NA00724E

Lupan, C., Mishra, A. K., Wolff, N., Drewes, J., Krüger, H., Vahl, A., Lupan, O., Pauporté, T., Viana, B., Kienle, L., Adelung, R., Leeuw, N. H. and Hansen, S., Nanosensors Based on a Single ZnO:Eu Nanowire for Hydrogen Gas Sensing, ACS Appl. Mater. Interfaces, 14(36), 41196–41207(2022).

https://doi.org/10.1021/acsami.2c10975

Madan, L. Verma, Sukriti, B. S. D. and Raj Saini., Synthesis and application of graphene-based sensors in biology: a review, Environ. Chem. Let., 20, 2189-2212(2022).

https://doi.org/10.1007/s10311-022-01404-1

Mahbub, T. and Hoque, M. E., Introduction to nanomaterials and nanomanufacturing for nanosensors, Nanofabrication Smart Nanosens. Appl., 1–20(2020).

https://doi.org/10.1016/B978-0-12-820702-4.00001-5

Mgadi, K., Ndaba, B., Roopnarain, A., Rama, H. and Adeleke, R., Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms, Front. Microbio., 15, 1664-3020(2024).

https://doi.org/10.3389/fmicb.2024.1354440

Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S. A., Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook, Front. Nanotechnol., 2, 2673-3013(2020).

https://doi.org/10.3389/fnano.2020.579954

Mohamed, E. F. and Awad, G., Development of nano-sensor and biosensor as an air pollution detection technique for the foreseeable future, Compre. Anal. chem., 99, 163–188(2022).

https://doi.org/10.1016/bs.coac.2021.11.003

Noori, A., Ngo, A., Gutierrez, P., Theberge, S. and White, J. C., Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum), J. Nanopart. Res., 22(6), 131(2020).

https://doi.org/10.1007/s11051-020-04866-y

Omanović, M. E. and Maksimović, M., Nanosensors applications in agriculture and food industry, Bull. Chem. Technol. Bosnia Herzegovina, 47, 59-70 (2016).

Pavithra, M., Blair, N. J. and Raj, M. B. J., Zn-doped NiO nanocomposites for efficient solar light-assisted wastewater treatment and its profound for low phytotoxic and antibacterial applications, Plant Nano Bio., 6, 100054(2023).

https://doi.org/10.1016/j.plana.2023.100054

Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., Ramady, E. H., Verma, K. K., Singh, A., Hullebusch, E. D. van, Singh, R. K., Jatav, H. S. and Choudhary, R., Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth, Bio, 10(8), 791(2021a).

https://doi.org/10.3390/biology10080791

Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A. and Jatav, H., Accumulation of nanoparticles in the soil-plant systems and their effects on human health, Annals Agri. Sci., 65(2), 137–143(2020b).

https://doi.org/10.1016/j.aoas.2020.08.001

Rawat, Dr. A. K., & Tripathi, U. K. (Eds.), Advances in Agronomy. Volume 25, (2023).

https://doi.org/10.22271/ed.book.2317

Ridhi, R., Saini, G., & Tripathi, S. (2024). Nanotechnology as a sustainable solution for proliferating agriculture sector. Materials Science and Engineering B, 304, 117383.

https://doi.org/10.1016/j.mseb.2024.117383

Sabzehmeidani, M. M. and Kazemzad, M., Quantum dots based sensitive nanosensors for the detection of antibiotics in natural products: A review, Sci. Tot. Environ., 810, 151997(2022).

https://doi.org/10.1016/j.scitotenv.2021.151997

Saha, A., Bhattacharjee, L. and Bhattacharjee, R. R., Carbon quantum dot-based nanosensors, Carbon Quantum Dot Sustainable Energy Optoelectr., 205–224(2023).

https://doi.org/10.1016/B978-0-323-90895-5.00006-0

Shang, Y., Hasan, Md. K., Ahammed, G. J., Li, M., Yin, H. and Zhou, J., Applications of Nanotechnology in Plant Growth and Crop Protection: A Review, Mol., 24(14), 2558(2019).

https://doi.org/10.3390/molecules24142558

Sharma, P., Pandey, V., Sharma, M. M. M., Patra, A., Singh, B., Mehta, S. and Husen, A., A Review on Biosensors and Nanosensors Application in Agroecosystems, Nanoscale Res. Let., 16(1), 136(2021).

https://doi.org/10.1186/s11671-021-03593-0

Shaw, D. S. and Honeychurch, K. C., Nanosensor Applications in Plant Science, Biosens., 12(9), 675 (2022).

https://doi.org/10.3390/bios12090675

Sheng, Y., Zhang, T., Zhang, S., Johnston, M., Zheng, X., Shan, Y., Liu, T., Huang, Z., Qian, F., Xie, Z., Ai, Y., Zhong, H., Kuang, T., Dincer, C., Urban, G. A. and Hu, J., A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics, Biosens. Bioelectr., 178, 113027(2021).

https://doi.org/10.1016/j.bios.2021.113027

Shrivastava, M., Srivastav, A., Gandhi, S., Rao, S., Roychoudhury, A., Kumar, A., Singhal, R. K., Jha, S. K. and Singh, S. D., Monitoring of engineered nanoparticles in soil-plant system: A review, Environ. Nanotechnol. Monit. Manage., 11, 100218(2019).

https://doi.org/10.1016/j.enmm.2019.100218

Srivastava, A. K., Dev, A. and Karmakar, S., Nanosensors and nanobiosensors in food and agriculture, Environ. Chem. Let., 16(1), 161–182(2018).

https://doi.org/10.1007/s10311-017-0674-7

Sundramoorthy, A. K., Vignesh, K. T. H., and Gunasekaran, S., Graphene-Based Nanosensors and Smart Food Packaging Systems for Food Safety and Quality Monitoring, Graphene Bioelectr., 267–306(2018).

https://doi.org/10.1016/B978-0-12-813349-1.00012-3

Szőllősi, R., Molnár, Á., Kondak, S. and Kolbert, Z., Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity, Plants, 9(12), 1745(2020).

https://doi.org/10.3390/plants9121745

Takeshita, V., Campos, E. V. R., Rodrigues, J. S. and Fraceto, L. F., Opinion: Hybrid nanoparticle systems – Two-way delivery approach for agriculture, Plant Nano Bio., 6, 100053(2023).

https://doi.org/10.1016/j.plana.2023.100053

Taylor, A. F., Rylott, E. L., Anderson, C. W. N. and Bruce, N. C., Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold, PLoS ONE, 9(4), e93793(2014).

https://doi.org/10.1371/journal.pone.0093793

Thakur, M., Wang, B. and Verma, M. L., Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives, Environ. Technol. Innovation, 26, 102371(2022).

https://doi.org/10.1016/j.eti.2022.102371

Tran, V. A., Vo, G. N. L., Vo, T.-T. T., Doan, V. D., Vo, V. and Le, V. T., Recent Applications and Prospects of Nanowire-Based Biosensors, Process., 11(6), 1739(2023).

https://doi.org/10.3390/pr11061739

Wang, J., Jiang, C., Wang, X., Wang, L., Chen, A., Hu, J. and Luo, Z., Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions, Anal., 141(20), 5886–5892(2016).

https://doi.org/10.1039/C6AN00868B

Xu, J., Phillips, R., Alarcon, H. and Kumar, S., Current and emergent analytical methods for monitoring the behavior of agricultural functional nanoparticles in relevant matrices: a review, Curr. Opin. Chem. Eng., 33, 100706(2021).

https://doi.org/10.1016/j.coche.2021.100706

Yang, N., Chen, X., Ren, T., Zhang, P. and Yang, D., Carbon nanotube-based biosensors, Sens. Actuators B: Chem., 207, 690–715(2015).

https://doi.org/10.1016/j.snb.2014.10.040

Zhang, L., Peng, D., Liang, R. P. and Qiu, J.-D., Graphene-based optical nanosensors for detection of heavy metal ions, TrAC Trends Anal. Chem., 102, 280–289(2018).

https://doi.org/10.1016/j.trac.2018.02.010

Zhang, Y., Zhu, Y., Zeng, Z., Zeng, G., Xiao, R., Wang, Y., Hu, Y., Tang, L. and Feng, C., Sensors for the environmental pollutant detection: Are we already there? Coordination Chemistry Reviews, 431, 213681 (2020).

https://doi.org/10.1016/j.ccr.2020.213681

Zain, M., Ma, H., Rahman, S. U., Nuruzzaman, M., Chaudhary, S., Azeem, I., Mehmood, F., Duan, A. and Sun, C., Nanotechnology in precision agriculture: Advancing towards sustainable crop production, Plant Physiol. Biochem., 206, 108244(2023).

https://doi.org/10.1016/j.plaphy.2023.108244

Contact Us

Powered by

Powered by OJS